This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A371042 #16 Mar 10 2024 08:01:17 %S A371042 1,0,2,6,12,140,1470,10122,114296,1874952,25462170,379431470, %T A371042 7546461252,151797222876,3066316693622,72101615826450, %U A371042 1843378516587120,47860832586054032,1338908395558366386,40675047500003794902,1282380661224172506620 %N A371042 E.g.f. satisfies A(x) = 1 + x^2*exp(x*A(x)). %F A371042 a(n) = n! * Sum_{k=0..floor(n/2)} k^(n-2*k) * binomial(n-2*k+1,k)/( (n-2*k+1)*(n-2*k)! ). %F A371042 From _Vaclav Kotesovec_, Mar 10 2024: (Start) %F A371042 E.g.f.: 1 - LambertW(-exp(x)*x^3)/x. %F A371042 a(n) ~ sqrt(1 + LambertW(exp(-1/3)/3)) * n^(n-1) / (exp(n) * 3^(n + 1/2) * LambertW(exp(-1/3)/3)^(n+1)). (End) %t A371042 nmax = 20; CoefficientList[Series[1 - LambertW[-E^x*x^3]/x, {x, 0, nmax}], x] * Range[0, nmax]! (* _Vaclav Kotesovec_, Mar 10 2024 *) %o A371042 (PARI) a(n) = n!*sum(k=0, n\2, k^(n-2*k)*binomial(n-2*k+1, k)/((n-2*k+1)*(n-2*k)!)); %Y A371042 Cf. A370984, A371018, A371043. %Y A371042 Cf. A161631, A371044. %Y A371042 Cf. A364978. %K A371042 nonn %O A371042 0,3 %A A371042 _Seiichi Manyama_, Mar 09 2024