cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A371064 Array read by ascending antidiagonals where T(n,k) is the number of paths of length k from the origin to a facet of the cross polytope of size k in Z^n.

This page as a plain text file.
%I A371064 #33 Mar 23 2024 21:12:47
%S A371064 2,4,2,6,12,2,8,30,28,2,10,56,126,60,2,12,90,344,462,124,2,14,132,730,
%T A371064 1880,1566,252,2,16,182,1332,5370,9368,5070,508,2,18,240,2198,12372,
%U A371064 36250,43736,15966,1020,2,20,306,3376,24710,106452,228090,195224,49422,2044,2
%N A371064 Array read by ascending antidiagonals where T(n,k) is the number of paths of length k from the origin to a facet of the cross polytope of size k in Z^n.
%C A371064 In the cross polytope of dimension n, each facet of dimension i-1 (i=1..n) has i^k paths of length k from the origin to its surface, and there are binomial(n,i)*2^i such facets.  To avoid double counting, an alternating sum is used to add up the paths to all the facets.
%F A371064 T(n,k) = Sum_{i=1..n} (-1)^(n-i) * binomial(n,i) * 2^i * i^k.
%e A371064 distance
%e A371064  k      1   2    3      4       5        6         7          8
%e A371064 dims ----------------------------------------------------------
%e A371064  n 1 |  2   2    2      2       2        2         2          2
%e A371064    2 |  4  12   28     60     124      252       508       1020
%e A371064    3 |  6  30  126    462    1566     5070     15966      49422
%e A371064    4 |  8  56  344   1880    9368    43736    195224     844760
%e A371064    5 | 10  90  730   5370   36250   228090   1359130    7771770
%e A371064    6 | 12 132 1332  12372  106452   856212   6505812   47189652
%e A371064    7 | 14 182 2198  24710  259574  2562182  23928758  213041990
%e A371064    8 | 16 240 3376  44592  554416  6511920  72592816  772172592
%Y A371064 Columns: A002939 (k=2).
%Y A371064 Rows: A028399 (n=2), A366058 (n=3).
%K A371064 tabl,nonn
%O A371064 1,1
%A A371064 _Shel Kaphan_, Mar 09 2024