This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A371064 #33 Mar 23 2024 21:12:47 %S A371064 2,4,2,6,12,2,8,30,28,2,10,56,126,60,2,12,90,344,462,124,2,14,132,730, %T A371064 1880,1566,252,2,16,182,1332,5370,9368,5070,508,2,18,240,2198,12372, %U A371064 36250,43736,15966,1020,2,20,306,3376,24710,106452,228090,195224,49422,2044,2 %N A371064 Array read by ascending antidiagonals where T(n,k) is the number of paths of length k from the origin to a facet of the cross polytope of size k in Z^n. %C A371064 In the cross polytope of dimension n, each facet of dimension i-1 (i=1..n) has i^k paths of length k from the origin to its surface, and there are binomial(n,i)*2^i such facets. To avoid double counting, an alternating sum is used to add up the paths to all the facets. %F A371064 T(n,k) = Sum_{i=1..n} (-1)^(n-i) * binomial(n,i) * 2^i * i^k. %e A371064 distance %e A371064 k 1 2 3 4 5 6 7 8 %e A371064 dims ---------------------------------------------------------- %e A371064 n 1 | 2 2 2 2 2 2 2 2 %e A371064 2 | 4 12 28 60 124 252 508 1020 %e A371064 3 | 6 30 126 462 1566 5070 15966 49422 %e A371064 4 | 8 56 344 1880 9368 43736 195224 844760 %e A371064 5 | 10 90 730 5370 36250 228090 1359130 7771770 %e A371064 6 | 12 132 1332 12372 106452 856212 6505812 47189652 %e A371064 7 | 14 182 2198 24710 259574 2562182 23928758 213041990 %e A371064 8 | 16 240 3376 44592 554416 6511920 72592816 772172592 %Y A371064 Columns: A002939 (k=2). %Y A371064 Rows: A028399 (n=2), A366058 (n=3). %K A371064 tabl,nonn %O A371064 1,1 %A A371064 _Shel Kaphan_, Mar 09 2024