This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A371067 #13 Mar 10 2024 09:06:27 %S A371067 1,1,0,6,48,180,2880,46200,483840,9087120,203212800,3752511840, %T A371067 89413632000,2510276408640,66301996400640,1982685238934400, %U A371067 67064515854336000,2274167610024710400,82881756045036748800,3301346557970183923200,135363022243685203968000 %N A371067 E.g.f. satisfies A(x) = 1 + x*exp(x^2*A(x)^2). %F A371067 a(n) = n! * Sum_{k=0..floor(n/2)} (n-2*k)^k * binomial(2*k+1,n-2*k)/( (2*k+1)*k! ). %F A371067 a(n) ~ n^(n-1) / (sqrt(2) * exp(n) * r^(n+1)), where r = 0.450347181930267755599214125867779338412791581819135528888185619948594... and s = 2.1478259175343697310213089706837271102656629945040966643073615920885... are roots of the system of equations exp(r^2*s^2)*r = s-1, 2*(s-1)*r^2*s = 1. - _Vaclav Kotesovec_, Mar 10 2024 %o A371067 (PARI) a(n) = n!*sum(k=0, n\2, (n-2*k)^k*binomial(2*k+1, n-2*k)/((2*k+1)*k!)); %Y A371067 Cf. A365283, A370927. %Y A371067 Cf. A161631, A371068. %K A371067 nonn %O A371067 0,4 %A A371067 _Seiichi Manyama_, Mar 09 2024