A371074 Number of the rightmost decimal digits of n that are the same as those of n^n.
0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 2, 0, 1, 0, 1, 2, 1, 0, 1, 1, 2, 0, 0, 0, 2, 1, 0, 0, 1, 1, 2, 0, 1, 0, 1, 2, 1, 0, 1, 1, 2, 0, 0, 0, 1, 1, 0, 0, 2, 1, 3, 0, 1, 0, 1, 2, 3, 0, 1, 1, 2, 0, 0, 0, 1, 1, 0, 0, 1, 1, 2, 0, 1, 0, 2, 2, 1, 0, 1, 1, 2, 0, 0, 0, 1, 1
Offset: 0
Examples
a(0) = 0 since 0^0 = 1 so that 0 and 0^0 have no digits in common. For n = 51, a(n) = 3 since 51^51 == 5051 (mod 10^4).
Links
- Jorge Jiménez Urroz and José Luis Andrés Yebra, On the Equation a^x == x (mod b^n), Journal of Integer Sequences, Article 09.8.8, 2009.
- Marco Ripà, Congruence speed of tetration bases ending with 0, arXiv:2402.07929 [math.NT], 2024.
- Marco Ripà and Luca Onnis, Number of stable digits of any integer tetration, Notes on Number Theory and Discrete Mathematics, 2022, 28(3), 441-457.
- Wikipedia, Tetration.
Formula
For any n >= 2, a(n) is such that n == n^n (mod 10^(a(n))) and n <> n^n (mod 10^(a(n)+1)).
Comments