This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A371076 #10 Mar 13 2024 13:12:22 %S A371076 1,0,1,0,4,2,0,28,24,6,0,280,320,144,24,0,3640,5040,3120,960,120,0, %T A371076 58240,92960,71280,30720,7200,720,0,1106560,1975680,1775760,960960, %U A371076 319200,60480,5040,0,24344320,47653760,48545280,31127040,13104000,3548160,564480,40320 %N A371076 Triangle read by rows: T(n, k) = 3^n*Sum_{j=0..k} (-1)^(k - j)*binomial(k, j) * Pochhammer(j/3, n). %F A371076 T(n, k) = k * T(n-1, k-1) + (3*n - 3 + k) * T(n-1, k) for 0 < k < n with initial values T(n, 0) = 0 for n > 0 and T(n, n) = n! for n >= 0. - _Werner Schulte_, Mar 13 2024 %e A371076 Triangle starts: %e A371076 [0] 1; %e A371076 [1] 0, 1; %e A371076 [2] 0, 4, 2; %e A371076 [3] 0, 28, 24, 6; %e A371076 [4] 0, 280, 320, 144, 24; %e A371076 [5] 0, 3640, 5040, 3120, 960, 120; %e A371076 [6] 0, 58240, 92960, 71280, 30720, 7200, 720; %e A371076 [7] 0, 1106560, 1975680, 1775760, 960960, 319200, 60480, 5040; %p A371076 A371076 := (n, k) -> local j; 3^n*add((-1)^(k - j)*binomial(k, j)*pochhammer(j/3, n), j = 0..k): seq(seq(A371076(n, k), k = 0..n), n = 0..9); %Y A371076 Cf. A371077, A007559 (column 1), A000142 (main diagonal), A052609 (subdiagonal). %K A371076 nonn,tabl %O A371076 0,5 %A A371076 _Peter Luschny_, Mar 10 2024