cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A371091 Number of 1's in the recursive decomposition of primorial base expansion of n.

This page as a plain text file.
%I A371091 #23 May 13 2024 09:14:55
%S A371091 0,1,1,2,1,2,1,2,2,3,2,3,1,2,2,3,2,3,2,3,3,4,3,4,1,2,2,3,2,3,1,2,2,3,
%T A371091 2,3,2,3,3,4,3,4,2,3,3,4,3,4,3,4,4,5,4,5,2,3,3,4,3,4,1,2,2,3,2,3,2,3,
%U A371091 3,4,3,4,2,3,3,4,3,4,3,4,4,5,4,5,2,3,3,4,3,4,2,3,3,4,3,4,3,4,4,5,4,5,3,4,4,5,4,5,4,5,5,6,5,6,3,4,4,5,4,5,1
%N A371091 Number of 1's in the recursive decomposition of primorial base expansion of n.
%C A371091 Take the primorial base expansion of n (A049345), and then replace any digit larger than 1 with its own primorial base expansion, and do this recursively until no digits larger than 1 remain. a(n) is then the number of 1's in the completed decomposition. (See the examples). This decomposition offers a way to design a natural primorial based numeral system that does not require an infinite number of arbitrary glyphs for its digits, but instead suffices with just two graphically distinct subfigures whose exact positions in the whole hierarchically organized composite glyph determines the numerical value of that glyph, a bit like in Maya numerals or Babylonian cuneiform digits, but based on a primorial number system instead of vigesimal or sexagesimal.
%H A371091 Antti Karttunen, <a href="/A371091/b371091.txt">Table of n, a(n) for n = 0..60060</a>
%H A371091 <a href="/index/Pri#primorialbase">Index entries for sequences related to primorial base</a>
%F A371091 a(n) = A371090(A276086(n)).
%F A371091 For all n, A267263(n) <= a(n) <= A276150(n).
%e A371091      n  A049345(n)     recursive              a(n) = number of 1's
%e A371091                        decomposition          in the decomposition
%e A371091 --------------------------------------------------------------------
%e A371091      0         0         ()                             0
%e A371091      1         1         (1)                            1
%e A371091      2        10         (1 0)                          1
%e A371091      3        11         (1 1)                          2
%e A371091      4        20         ((1 0) 0)                      1
%e A371091      5        21         ((1 0) 1)                      2
%e A371091      6       100         (1 0 0)                        1
%e A371091      7       101         (1 0 1)                        2
%e A371091      8       110         (1 1 0)                        2
%e A371091      9       111         (1 1 1)                        3
%e A371091     10       120         (1 (1 0) 0)                    2
%e A371091     11       121         (1 (1 0) 1)                    3
%e A371091     12       200         ((1 0) 0 0)                    1
%e A371091     ..
%e A371091     21       311         ((1 1) 1 1)                    4
%e A371091     ..
%e A371091     24       400         (((1 0) 0) 0 0)                1
%e A371091     ..
%e A371091     29       421         (((1 0) 0) (1 0) 1)            3
%e A371091     30      1000         (1 0 0 0)                      1
%e A371091     ..
%e A371091     51      1311         (1 (1 1) 1 1)                  5
%e A371091     ..
%e A371091     59      1421         (1 ((1 0) 0) (1 0) 1)          4
%e A371091     60      2000         ((1 0) 0 0 0)                  1
%e A371091     ..
%e A371091    111      3311         ((1 1) (1 1) 1 1)              6
%e A371091    ...
%e A371091    360     15000         (1 ((1 0) 1) 0 0 0)            3
%e A371091    ...
%e A371091   2001     93311         ((1 1 1) (1 1) (1 1) 1 1)      9
%e A371091   ....
%e A371091   4311    193311         (1 (1 1 1) (1 1) (1 1) 1 1)   10.
%e A371091 29 is decomposed in piecemeal fashion as: A049345(29) = 421 --> ("20" "10" "1") --> (((1 0) 0) (1 0) 1).
%o A371091 (PARI)
%o A371091 A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); };
%o A371091 A371090(n) = vecsum(apply(e->if(1==e,1,A371091(e)),factor(n)[, 2]));
%o A371091 A371091(n) = A371090(A276086(n));
%Y A371091 Cf. A049345, A267263, A276086, A276150, A371090.
%Y A371091 Cf. A372559 (positions of records and the first occurrence of n).
%Y A371091 Differs from A328482 for the first time at n=360, where a(360) = 3, while A328482(360) = 1.
%K A371091 nonn,base
%O A371091 0,4
%A A371091 _Antti Karttunen_, Mar 31 2024