cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A371103 Array A read by upward antidiagonals in which the entry A(n,k) in row n and column k is defined by A(n, k) = A371092(A371102(n, k)), n,k >= 1.

This page as a plain text file.
%I A371103 #9 Apr 21 2024 14:29:15
%S A371103 1,1,2,1,3,3,1,3,3,4,1,1,1,6,5,1,1,1,9,2,6,1,1,1,1,3,9,7,1,1,1,1,3,1,
%T A371103 6,8,1,1,1,1,1,1,8,12,9,1,1,1,1,1,1,12,18,1,10,1,1,1,1,1,1,18,27,1,15,
%U A371103 11,1,1,1,1,1,1,27,21,1,12,9,12,1,1,1,1,1,1,21,16,1,17,7,18,13,1,1,1,1,1,1,16,23,1,4,2,27,5,14
%N A371103 Array A read by upward antidiagonals in which the entry A(n,k) in row n and column k is defined by A(n, k) = A371092(A371102(n, k)), n,k >= 1.
%C A371103 A(n, k) gives the column index of A371102(n, k) in array A257852.
%e A371103 Array begins:
%e A371103 n\k| 1  2   3   ...
%e A371103 ---+--------------------------------------------------------------------
%e A371103 1  | 1, 2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15, 16, 17,
%e A371103 2  | 1, 3,  3,  6,  2,  9,  6, 12,  1, 15,  9, 18,  5, 21, 12, 24,  4,
%e A371103 3  | 1, 3,  1,  9,  3,  1,  8, 18,  1, 12,  7, 27,  2,  8, 17, 36,  5,
%e A371103 4  | 1, 1,  1,  1,  3,  1, 12, 27,  1, 17,  2, 21,  3, 12,  4, 54,  2,
%e A371103 5  | 1, 1,  1,  1,  1,  1, 18, 21,  1,  4,  2, 16,  3, 18,  5, 81,  3,
%e A371103 6  | 1, 1,  1,  1,  1,  1, 27, 16,  1,  5,  3, 23,  1, 27,  2, 16,  3,
%e A371103 7  | 1, 1,  1,  1,  1,  1, 21, 23,  1,  2,  3, 18,  1, 21,  3, 23,  1,
%e A371103 8  | 1, 1,  1,  1,  1,  1, 16, 18,  1,  3,  1, 26,  1, 16,  3, 18,  1,
%e A371103 9  | 1, 1,  1,  1,  1,  1, 23, 26,  1,  3,  1, 39,  1, 23,  1, 26,  1,
%e A371103 10 | 1, 1,  1,  1,  1,  1, 18, 39,  1,  1,  1, 30,  1, 18,  1, 39,  1,
%e A371103 11 | 1, 1,  1,  1,  1,  1, 26, 30,  1,  1,  1, 44,  1, 26,  1, 30,  1,
%e A371103 12 | 1, 1,  1,  1,  1,  1, 39, 44,  1,  1,  1, 66,  1, 39,  1, 44,  1,
%e A371103 13 | 1, 1,  1,  1,  1,  1, 30, 66,  1,  1,  1, 99,  1, 30,  1, 66,  1,
%e A371103 14 | 1, 1,  1,  1,  1,  1, 44, 99,  1,  1,  1, 75,  1, 44,  1, 99,  1,
%e A371103 15 | 1, 1,  1,  1,  1,  1, 66, 75,  1,  1,  1, 28,  1, 66,  1, 75,  1,
%e A371103 16 | 1, 1,  1,  1,  1,  1, 99, 28,  1,  1,  1, 42,  1, 99,  1, 28,  1,
%e A371103 17 | 1, 1,  1,  1,  1,  1, 75, 42,  1,  1,  1, 63,  1, 75,  1, 42,  1,
%e A371103 18 | 1, 1,  1,  1,  1,  1, 28, 63,  1,  1,  1, 48,  1, 28,  1, 63,  1,
%e A371103 19 | 1, 1,  1,  1,  1,  1, 42, 48,  1,  1,  1, 71,  1, 42,  1, 48,  1,
%e A371103 20 | 1, 1,  1,  1,  1,  1, 63, 71,  1,  1,  1, 54,  1, 63,  1, 71,  1,
%e A371103 21 | 1, 1,  1,  1,  1,  1, 48, 54,  1,  1,  1, 80,  1, 48,  1, 54,  1,
%o A371103 (PARI)
%o A371103 up_to = 105;
%o A371103 A000265(n) = (n>>valuation(n,2));
%o A371103 A371092(n) = floor((A000265(1+(3*n))+5)/6);
%o A371103 A371094(n) = { my(m=1+3*n, e=valuation(m,2)); ((m*(2^e)) + (((4^e)-1)/3)); };
%o A371103 A371102sq(n,k) = if(1==n,4*k-1,A371094(A371102sq(n-1,k)));
%o A371103 A371103sq(n,k) = A371092(A371102sq(n,k));
%o A371103 A371103list(up_to) = { my(v = vector(up_to), i=0); for(a=1,oo, for(col=1,a, i++; if(i > up_to, return(v)); v[i] = A371103sq((a-(col-1)),col))); (v); };
%o A371103 v371103 = A371103list(up_to);
%o A371103 A371103(n) = v371103[n];
%Y A371103 Cf. A000027 (row 1), A257852, A371092, A371102.
%Y A371103 Cf. also arrays A371097, A371101.
%K A371103 nonn,tabl,easy
%O A371103 1,3
%A A371103 _Antti Karttunen_, Apr 21 2024