This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A371104 #12 Mar 12 2024 20:14:17 %S A371104 7,8,213,214,2325,2532,4625,30282,32358,32384,60098,570816,572884, %T A371104 575190,9732128,243513275 %N A371104 Starting from k=7, each subsequent term is the next larger k such that the ratio A276086(k)/A003415(k) is nearer to 1 than for the previous k in the sequence. %C A371104 Note that A276086(6) / A003415(6) = 5/5 = 1. If there are any x > 6, for which the ratio is 1, then the least one of them will terminate this sequence. Question: Could this sequence actually be infinite? %C A371104 If it exists, a(17) > 1207959552. %H A371104 <a href="/index/Pri#primorialbase">Index entries for sequences related to primorial base</a> %e A371104 k A049345(k) A276086(k)/A003415(k) A276086(k)-A003415(k) %e A371104 ---------------------------------------------------------------------- %e A371104 7, 101, 10/1 = 10, 9 %e A371104 8, 110, 15/12 = 1.25, 3 %e A371104 213, 10011, 66/74 = 0.89189189, -8 %e A371104 214, 10020, 99/109 = 0.90825688, -10 %e A371104 2325, 100211, 1950/1780 = 1.0955056, 170 %e A371104 2532, 110200, 3575/3388 = 1.0551948, 187 %e A371104 4625, 200021, 3042/2900 = 1.0489655, 142 %e A371104 30282, 1011200, 32725/34181 = 0.95740324, -1456 %e A371104 32358, 1100300, 27625/26971 = 1.0242483, 654 %e A371104 32384, 1101210, 116025/117696 = 0.98580241, -1671 %e A371104 60098, 2001110, 30345/30749 = 0.98686136, -404 %e A371104 570816, 12011100, 2114035/2093568 = 1.0097761, 20467 %e A371104 572884, 12100020, 642447/643056 = 0.99905296, -609 %e A371104 575190, 12200000, 927979/927483 = 1.0005348, 496 %e A371104 9732128, 101103110, 26152035/26148912 = 1.0001194, 3123 %e A371104 243513275, 1220000021, 99685818/99683810 = 1.0000201, 2008. %o A371104 (PARI) %o A371104 A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1])); %o A371104 A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); }; %o A371104 print1(7, ", "); r = A276086(7)/A003415(7); for(n=7, oo, t=A276086(n)/A003415(n); if(abs(1-t) < abs(1-r), r=t; print1(n, ", "))) %Y A371104 Cf. A003415, A049345, A276086, A351228. %K A371104 nonn,hard,more %O A371104 1,1 %A A371104 _Antti Karttunen_, Mar 12 2024