This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A371127 #6 Mar 19 2024 08:38:08 %S A371127 3,5,6,9,10,11,12,17,18,20,22,24,25,27,31,34,36,40,41,44,48,50,54,59, %T A371127 62,67,68,72,80,81,82,83,88,96,100,108,109,118,121,124,125,127,134, %U A371127 136,144,157,160,162,164,166,176,179,191,192,200,211,216,218,236,241 %N A371127 Powers of 2 times powers > 1 of a prime-indexed prime number. %C A371127 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. %e A371127 The terms together with their prime indices begin: %e A371127 3: {2} %e A371127 5: {3} %e A371127 6: {1,2} %e A371127 9: {2,2} %e A371127 10: {1,3} %e A371127 11: {5} %e A371127 12: {1,1,2} %e A371127 17: {7} %e A371127 18: {1,2,2} %e A371127 20: {1,1,3} %e A371127 22: {1,5} %e A371127 24: {1,1,1,2} %e A371127 25: {3,3} %e A371127 27: {2,2,2} %e A371127 31: {11} %e A371127 34: {1,7} %e A371127 36: {1,1,2,2} %t A371127 Select[Range[100],Length[Union @@ Divisors/@PrimePi/@First/@If[#==1,{},FactorInteger[#]]]==2&] %Y A371127 Subset of A302540. %Y A371127 Subset of A336101 = powers of 2 times powers of primes. %Y A371127 Positions of 2's in A370820. %Y A371127 Counting prime factors instead of divisors gives A371287. %Y A371127 A000005 counts divisors. %Y A371127 A000961 lists powers of primes, A302596 of prime index. %Y A371127 A001221 counts distinct prime factors. %Y A371127 A003963 gives product of prime indices. %Y A371127 A027746 lists prime factors, indices A112798, length A001222. %Y A371127 A076610 lists products of primes of prime index. %Y A371127 A355731 counts choices of a divisor of each prime index, firsts A355732. %Y A371127 A355741 counts choices of a prime factor of each prime index. %Y A371127 Cf. A000079, A005179, A007416, A303975, A319899, A355739, A370348, A370802, A371165-A371170, A371178. %K A371127 nonn %O A371127 1,1 %A A371127 _Gus Wiseman_, Mar 18 2024