A371129 Integers m whose (constant) convergence speed is exactly 3 (i.e., m^^(m+1) has 3 more rightmost frozen digits than m^^m, where ^^ indicates tetration).
25, 55, 57, 68, 105, 124, 126, 135, 185, 193, 215, 249, 265, 295, 318, 345, 374, 375, 376, 425, 432, 455, 505, 535, 568, 585, 615, 665, 682, 695, 745, 751, 775, 807, 818, 825, 855, 874, 876, 905, 932, 935, 943, 985, 999, 1001, 1015, 1057, 1065, 1095, 1124
Offset: 1
Examples
If n = 3, m = 57 and so 57^^58 has exactly 3 more stable digits at the end of the result than 57^^57.
Links
- Marco Ripà, On the constant congruence speed of tetration, Notes on Number Theory and Discrete Mathematics, Volume 26, 2020, Number 3, Pages 245—260 (see Table 1, pp. 249—251).
- Marco Ripà and Luca Onnis, Number of stable digits of any integer tetration, Notes on Number Theory and Discrete Mathematics, 2022, 28(3), 441—457 (see Equation 16, p. 454).
- Wikipedia, Tetration
Formula
a(n) is such that A317905(m) = 3, for m = 25, 26, 27, ...
Comments