This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A371131 #9 May 02 2024 09:47:10 %S A371131 1,2,3,7,13,53,37,311,89,151,223,2045,281,3241,1163,827,659,9037,1069, %T A371131 17611,1511,4211,28181,122119,2423,10627,88483,6997,7561,98965,5443, %U A371131 88099,6473,95603,309073,50543,10271,192709,508051,438979,14323,305107,26203 %N A371131 Least number with exactly n distinct divisors of prime indices. Position of first appearance of n in A370820. %C A371131 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. %C A371131 Every nonnegative integer belongs to A370820, so this sequence is infinite. %C A371131 Are there any terms with more than two prime factors? %e A371131 The terms together with their prime indices begin: %e A371131 1: {} %e A371131 2: {1} %e A371131 3: {2} %e A371131 7: {4} %e A371131 13: {6} %e A371131 53: {16} %e A371131 37: {12} %e A371131 311: {64} %e A371131 89: {24} %e A371131 151: {36} %e A371131 223: {48} %e A371131 2045: {3,80} %e A371131 281: {60} %e A371131 3241: {4,90} %e A371131 1163: {192} %e A371131 827: {144} %e A371131 659: {120} %e A371131 9037: {4,210} %e A371131 1069: {180} %e A371131 17611: {5,252} %t A371131 rnnm[q_]:=Max@@Select[Range[Min@@q,Max@@q],SubsetQ[q,Range[#]]&]; %t A371131 posfirsts[q_]:=Table[Position[q,n][[1,1]],{n,Min@@q,rnnm[q]}]; %t A371131 posfirsts[Table[Length[Union @@ Divisors/@PrimePi/@First/@If[n==1, {},FactorInteger[n]]],{n,1000}]] %o A371131 (PARI) f(n) = my(list=List(), f=factor(n)); for (i=1, #f~, fordiv(primepi(f[i,1]), d, listput(list, d))); #Set(list); \\ A370820 %o A371131 a(n) = my(k=1); while (f(k) != n, k++); k; \\ _Michel Marcus_, May 02 2024 %Y A371131 Counting prime factors instead of divisors (see A303975) gives A062447(>0). %Y A371131 The sorted version is A371181. %Y A371131 A000005 counts divisors. %Y A371131 A001221 counts distinct prime factors. %Y A371131 A003963 gives product of prime indices. %Y A371131 A027746 lists prime factors, A112798 indices, length A001222. %Y A371131 A355731 counts choices of a divisor of each prime index, firsts A355732. %Y A371131 A355741 counts choices of a prime factor of each prime index. %Y A371131 Cf. A000720, A000792, A005179, A007416, A355739, A370348, A370802, A370808, A371130, A371165, A371177. %K A371131 nonn %O A371131 0,2 %A A371131 _Gus Wiseman_, Mar 20 2024