This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A371132 #6 Mar 18 2024 09:53:32 %S A371132 0,0,1,1,2,3,5,6,10,14,21,28,40,53,73,96,130,170,223,288,375,480,616, %T A371132 780,990,1245,1567,1954,2440,3024,3745,4610,5674,6947,8499,10349, %U A371132 12591,15258,18468,22277,26841,32238,38673,46262,55278,65881,78423,93136,110477 %N A371132 Number of integer partitions of n with fewer distinct parts than distinct divisors of parts. %C A371132 The Heinz numbers of these partitions are given by A371179. %e A371132 The partition (4,3,1,1) has 3 distinct parts {1,3,4} and 4 distinct divisors of parts {1,2,3,4}, so is counted under a(9). %e A371132 The a(0) = 0 through a(9) = 14 partitions: %e A371132 . . (2) (3) (4) (5) (6) (7) (8) (9) %e A371132 (22) (32) (33) (43) (44) (54) %e A371132 (41) (42) (52) (53) (63) %e A371132 (222) (61) (62) (72) %e A371132 (411) (322) (332) (81) %e A371132 (4111) (422) (333) %e A371132 (431) (432) %e A371132 (611) (441) %e A371132 (2222) (522) %e A371132 (41111) (621) %e A371132 (3222) %e A371132 (4311) %e A371132 (6111) %e A371132 (411111) %t A371132 Table[Length[Select[IntegerPartitions[n],Length[Union[#]] < Length[Union@@Divisors/@#]&]],{n,0,30}] %Y A371132 The LHS is represented by A001221, distinct case of A001222. %Y A371132 The RHS is represented by A370820, for prime factors A303975. %Y A371132 The complement counting all parts on the LHS is A371172, ranks A371165. %Y A371132 Counting all parts on the LHS gives A371173, ranks A371168. %Y A371132 The complement is counted by A371178, ranks A371177. %Y A371132 These partitions are ranked by A371179. %Y A371132 The strict case is A371180, complement A371128. %Y A371132 A000005 counts divisors. %Y A371132 A000041 counts integer partitions, strict A000009. %Y A371132 A008284 counts partitions by length. %Y A371132 Cf. A003963, A239312, A319055, A355740, A370802, A370803, A370808, A370813, A371130, A371171. %K A371132 nonn %O A371132 0,5 %A A371132 _Gus Wiseman_, Mar 17 2024