cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A371145 E.g.f. satisfies log(A(x)) = x^2*A(x)^2 * (exp(x*A(x)) - 1).

This page as a plain text file.
%I A371145 #11 Sep 21 2024 11:25:31
%S A371145 1,0,0,6,12,20,2550,20202,105896,6501672,111489930,1203491630,
%T A371145 53987127612,1496864088876,27032265220142,1088916434686290,
%U A371145 40758246253626960,1081683296597292752,44159293393817257746,1998309768008640244182,71124972575776526592740
%N A371145 E.g.f. satisfies log(A(x)) = x^2*A(x)^2 * (exp(x*A(x)) - 1).
%H A371145 <a href="/index/Res#revert">Index entries for reversions of series</a>
%F A371145 a(n) = n! * Sum_{k=0..floor(n/3)} (n+1)^(k-1) * Stirling2(n-2*k,k)/(n-2*k)!.
%F A371145 E.g.f.: (1/x) * Series_Reversion( x*exp(x^2*(1 - exp(x))) ). - _Seiichi Manyama_, Sep 21 2024
%o A371145 (PARI) a(n) = n!*sum(k=0, n\3, (n+1)^(k-1)*stirling(n-2*k, k, 2)/(n-2*k)!);
%Y A371145 Cf. A356785.
%K A371145 nonn
%O A371145 0,4
%A A371145 _Seiichi Manyama_, Mar 13 2024