This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A371148 #12 Mar 23 2024 05:04:26 %S A371148 1,1,2,1,1,1,3,2,1,1,2,1,1,1,4,1,2,1,1,1,1,1,3,2,1,3,1,1,1,1,5,1,1,1, %T A371148 2,1,1,1,1,1,1,1,1,2,1,1,4,2,2,1,1,1,3,1,1,1,1,1,1,1,1,1,6,1,1,1,1,1, %U A371148 1,1,3,1,1,2,1,1,1,1,4,4,1,1,1,1,1,1,1 %N A371148 Let n = Product_{j=1..k} p_j^e_j and gpf(n)! = Product_{j=1..k} p_j^f_j, where p_j = A000040(j) is the j-th prime and p_k = gpf(n) = A006530(n) is the greatest prime factor of n. a(n) is the numerator of the maximum of e_j/f_j. %H A371148 Pontus von Brömssen, <a href="/A371148/b371148.txt">Table of n, a(n) for n = 2..10000</a> %F A371148 A362333(n) = ceiling(a(n)/A371149(n)). %e A371148 For n = 80 = 2^4 * 3^0 * 5^1, gpf(80)! = 5! = 2^3 * 3^1 * 5^1. The ratios of the prime exponents are 4/3, 0/1, and 1/1, the greatest of which is 4/3, so a(80) = 4. %o A371148 (Python) %o A371148 from sympy import factorint,Rational %o A371148 def A371148(n): %o A371148 f = factorint(n) %o A371148 gpf = max(f,default=None) %o A371148 a = 0 %o A371148 for p in f: %o A371148 m = gpf %o A371148 v = 0 %o A371148 while m >= p: %o A371148 m //= p %o A371148 v += m %o A371148 a = max(a,Rational(f[p],v)) %o A371148 return a.p %Y A371148 Cf. A000040, A006530, A362333, A371149 (denominators), A371150, A371151. %K A371148 nonn,frac %O A371148 2,3 %A A371148 _Pontus von Brömssen_, Mar 13 2024