This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A371149 #11 Mar 23 2024 05:04:41 %S A371149 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, %T A371149 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, %U A371149 1,1,1,1,1,1,1,1,1,1,3,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 %N A371149 Let n = Product_{j=1..k} p_j^e_j and gpf(n)! = Product_{j=1..k} p_j^f_j, where p_j = A000040(j) is the j-th prime and p_k = gpf(n) = A006530(n) is the greatest prime factor of n. a(n) is the denominator of the maximum of e_j/f_j. %H A371149 Pontus von Brömssen, <a href="/A371149/b371149.txt">Table of n, a(n) for n = 2..10000</a> %F A371149 A362333(n) = ceiling(A371148(n)/a(n)). %e A371149 For n = 80 = 2^4 * 3^0 * 5^1, gpf(80)! = 5! = 2^3 * 3^1 * 5^1. The ratios of the prime exponents are 4/3, 0/1, and 1/1, the greatest of which is 4/3, so a(80) = 3. %o A371149 (Python) %o A371149 from sympy import factorint, Rational %o A371149 def A371149(n): %o A371149 f = factorint(n) %o A371149 gpf = max(f, default=None) %o A371149 a = 0 %o A371149 for p in f: %o A371149 m = gpf %o A371149 v = 0 %o A371149 while m >= p: %o A371149 m //= p %o A371149 v += m %o A371149 a = max(a, Rational(f[p], v)) %o A371149 return a.q %Y A371149 Cf. A000040, A006530, A362333, A371148 (numerators), A371150, A371151. %K A371149 nonn,frac %O A371149 2,79 %A A371149 _Pontus von Brömssen_, Mar 13 2024