cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A371165 Positive integers with as many divisors (A000005) as distinct divisors of prime indices (A370820).

This page as a plain text file.
%I A371165 #13 Mar 23 2024 22:13:01
%S A371165 3,5,11,17,26,31,35,38,39,41,49,57,58,59,65,67,69,77,83,86,87,94,109,
%T A371165 119,127,129,133,146,148,157,158,179,191,202,206,211,217,235,237,241,
%U A371165 244,253,274,277,278,283,284,287,291,298,303,319,326,331,333,334,353
%N A371165 Positive integers with as many divisors (A000005) as distinct divisors of prime indices (A370820).
%C A371165 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
%F A371165 A000005(a(n)) = A370820(a(n)).
%e A371165 The terms together with their prime indices begin:
%e A371165      3: {2}        67: {19}        158: {1,22}
%e A371165      5: {3}        69: {2,9}       179: {41}
%e A371165     11: {5}        77: {4,5}       191: {43}
%e A371165     17: {7}        83: {23}        202: {1,26}
%e A371165     26: {1,6}      86: {1,14}      206: {1,27}
%e A371165     31: {11}       87: {2,10}      211: {47}
%e A371165     35: {3,4}      94: {1,15}      217: {4,11}
%e A371165     38: {1,8}     109: {29}        235: {3,15}
%e A371165     39: {2,6}     119: {4,7}       237: {2,22}
%e A371165     41: {13}      127: {31}        241: {53}
%e A371165     49: {4,4}     129: {2,14}      244: {1,1,18}
%e A371165     57: {2,8}     133: {4,8}       253: {5,9}
%e A371165     58: {1,10}    146: {1,21}      274: {1,33}
%e A371165     59: {17}      148: {1,1,12}    277: {59}
%e A371165     65: {3,6}     157: {37}        278: {1,34}
%t A371165 Select[Range[100],Length[Divisors[#]] == Length[Union@@Divisors/@PrimePi/@First/@If[#==1,{},FactorInteger[#]]]&]
%Y A371165 For prime factors instead of divisors on both sides we get A319899.
%Y A371165 For prime factors on LHS we get A370802, for distinct prime factors A371177.
%Y A371165 The RHS is A370820, for prime factors instead of divisors A303975.
%Y A371165 For (greater than) instead of (equal) we get A371166.
%Y A371165 For (less than) instead of (equal) we get A371167.
%Y A371165 Partitions of this type are counted by A371172.
%Y A371165 Other inequalities: A370348 (A371171), A371168 (A371173), A371169, A371170.
%Y A371165 A000005 counts divisors.
%Y A371165 A001221 counts distinct prime factors.
%Y A371165 A027746 lists prime factors, A112798 indices, length A001222.
%Y A371165 A239312 counts divisor-choosable partitions, ranks A368110.
%Y A371165 A355731 counts choices of a divisor of each prime index, firsts A355732.
%Y A371165 A370320 counts non-divisor-choosable partitions, ranks A355740.
%Y A371165 A370814 counts divisor-choosable factorizations, complement A370813.
%Y A371165 Cf. A000792, A003963, A355529, A355739, A355741, A368100, A370808, A371127.
%K A371165 nonn
%O A371165 1,1
%A A371165 _Gus Wiseman_, Mar 14 2024