cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A371167 Positive integers with more divisors (A000005) than distinct divisors of prime indices (A370820).

This page as a plain text file.
%I A371167 #11 Mar 23 2024 22:12:46
%S A371167 1,2,4,6,8,9,10,12,14,15,16,18,20,21,22,24,25,27,28,30,32,33,34,36,40,
%T A371167 42,44,45,46,48,50,51,52,54,55,56,60,62,63,64,66,68,70,72,75,76,78,80,
%U A371167 81,82,84,85,88,90,92,93,96,98,99,100,102,104,105,108,110
%N A371167 Positive integers with more divisors (A000005) than distinct divisors of prime indices (A370820).
%C A371167 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
%F A371167 A000005(a(n)) > A370820(a(n)).
%e A371167 The prime indices of 814 are {1,5,12}, and there are 8 divisors (1,2,11,22,37,74,407,814) and 7 distinct divisors of prime indices (1,2,3,4,5,6,12), so 814 is in the sequence.
%e A371167 The prime indices of 1859 are {5,6,6}, and there are 6 divisors (1,11,13,143,169,1859) and 5 distinct divisors of prime indices (1,2,3,5,6), so 1859 is in the sequence.
%e A371167 The terms together with their prime indices begin:
%e A371167      1: {}
%e A371167      2: {1}
%e A371167      4: {1,1}
%e A371167      6: {1,2}
%e A371167      8: {1,1,1}
%e A371167      9: {2,2}
%e A371167     10: {1,3}
%e A371167     12: {1,1,2}
%e A371167     14: {1,4}
%e A371167     15: {2,3}
%e A371167     16: {1,1,1,1}
%e A371167     18: {1,2,2}
%e A371167     20: {1,1,3}
%e A371167     21: {2,4}
%e A371167     22: {1,5}
%e A371167     24: {1,1,1,2}
%e A371167     25: {3,3}
%e A371167     27: {2,2,2}
%e A371167     28: {1,1,4}
%e A371167     30: {1,2,3}
%t A371167 Select[Range[100],Length[Divisors[#]]>Length[Union @@ Divisors/@PrimePi/@First/@If[#==1,{},FactorInteger[#]]]&]
%Y A371167 For prime factors on the LHS we have A370348, counted by A371171.
%Y A371167 The RHS is A370820, for prime factors instead of divisors A303975.
%Y A371167 For (equal to) instead of (greater than) we get A371165, counted by A371172.
%Y A371167 For (less than) instead of (greater than) we get A371166.
%Y A371167 Other equalities: A319899, A370802 (A371130), A371128, A371177 (A371178).
%Y A371167 Other inequalities: A371168 (A371173), A371169, A371170.
%Y A371167 A000005 counts divisors.
%Y A371167 A001221 counts distinct prime factors.
%Y A371167 A027746 lists prime factors, A112798 indices, length A001222.
%Y A371167 A239312 counts divisor-choosable partitions, ranks A368110.
%Y A371167 A355731 counts choices of a divisor of each prime index, firsts A355732.
%Y A371167 A370320 counts non-divisor-choosable partitions, ranks A355740.
%Y A371167 A370814 counts divisor-choosable factorizations, complement A370813.
%Y A371167 Cf. A000792, A003963, A355529, A355739, A355741, A368100, A370808, A371127.
%K A371167 nonn
%O A371167 1,2
%A A371167 _Gus Wiseman_, Mar 14 2024