This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A371167 #11 Mar 23 2024 22:12:46 %S A371167 1,2,4,6,8,9,10,12,14,15,16,18,20,21,22,24,25,27,28,30,32,33,34,36,40, %T A371167 42,44,45,46,48,50,51,52,54,55,56,60,62,63,64,66,68,70,72,75,76,78,80, %U A371167 81,82,84,85,88,90,92,93,96,98,99,100,102,104,105,108,110 %N A371167 Positive integers with more divisors (A000005) than distinct divisors of prime indices (A370820). %C A371167 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. %F A371167 A000005(a(n)) > A370820(a(n)). %e A371167 The prime indices of 814 are {1,5,12}, and there are 8 divisors (1,2,11,22,37,74,407,814) and 7 distinct divisors of prime indices (1,2,3,4,5,6,12), so 814 is in the sequence. %e A371167 The prime indices of 1859 are {5,6,6}, and there are 6 divisors (1,11,13,143,169,1859) and 5 distinct divisors of prime indices (1,2,3,5,6), so 1859 is in the sequence. %e A371167 The terms together with their prime indices begin: %e A371167 1: {} %e A371167 2: {1} %e A371167 4: {1,1} %e A371167 6: {1,2} %e A371167 8: {1,1,1} %e A371167 9: {2,2} %e A371167 10: {1,3} %e A371167 12: {1,1,2} %e A371167 14: {1,4} %e A371167 15: {2,3} %e A371167 16: {1,1,1,1} %e A371167 18: {1,2,2} %e A371167 20: {1,1,3} %e A371167 21: {2,4} %e A371167 22: {1,5} %e A371167 24: {1,1,1,2} %e A371167 25: {3,3} %e A371167 27: {2,2,2} %e A371167 28: {1,1,4} %e A371167 30: {1,2,3} %t A371167 Select[Range[100],Length[Divisors[#]]>Length[Union @@ Divisors/@PrimePi/@First/@If[#==1,{},FactorInteger[#]]]&] %Y A371167 For prime factors on the LHS we have A370348, counted by A371171. %Y A371167 The RHS is A370820, for prime factors instead of divisors A303975. %Y A371167 For (equal to) instead of (greater than) we get A371165, counted by A371172. %Y A371167 For (less than) instead of (greater than) we get A371166. %Y A371167 Other equalities: A319899, A370802 (A371130), A371128, A371177 (A371178). %Y A371167 Other inequalities: A371168 (A371173), A371169, A371170. %Y A371167 A000005 counts divisors. %Y A371167 A001221 counts distinct prime factors. %Y A371167 A027746 lists prime factors, A112798 indices, length A001222. %Y A371167 A239312 counts divisor-choosable partitions, ranks A368110. %Y A371167 A355731 counts choices of a divisor of each prime index, firsts A355732. %Y A371167 A370320 counts non-divisor-choosable partitions, ranks A355740. %Y A371167 A370814 counts divisor-choosable factorizations, complement A370813. %Y A371167 Cf. A000792, A003963, A355529, A355739, A355741, A368100, A370808, A371127. %K A371167 nonn %O A371167 1,2 %A A371167 _Gus Wiseman_, Mar 14 2024