This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A371169 #6 Mar 16 2024 21:40:54 %S A371169 1,2,4,6,8,9,10,12,16,18,20,22,24,25,27,28,30,32,34,36,40,42,44,45,48, %T A371169 50,54,56,60,62,63,64,66,68,72,75,80,81,82,84,88,90,92,96,98,99,100, %U A371169 102,104,108,110,112,118,120,121,124,125,126,128,132,134,135 %N A371169 Positive integers with at least as many prime factors (A001222) as distinct divisors of prime indices (A370820). %C A371169 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. %e A371169 The terms together with their prime indices begin: %e A371169 1: {} %e A371169 2: {1} %e A371169 4: {1,1} %e A371169 6: {1,2} %e A371169 8: {1,1,1} %e A371169 9: {2,2} %e A371169 10: {1,3} %e A371169 12: {1,1,2} %e A371169 16: {1,1,1,1} %e A371169 18: {1,2,2} %e A371169 20: {1,1,3} %e A371169 22: {1,5} %e A371169 24: {1,1,1,2} %e A371169 25: {3,3} %e A371169 27: {2,2,2} %e A371169 28: {1,1,4} %e A371169 30: {1,2,3} %e A371169 32: {1,1,1,1,1} %e A371169 34: {1,7} %e A371169 36: {1,1,2,2} %t A371169 Select[Range[100],PrimeOmega[#]>=Length[Union @@ Divisors/@PrimePi/@First/@If[#==1,{},FactorInteger[#]]]&] %Y A371169 The strict version is A370348 counted by A371171. %Y A371169 The case of equality is A370802, counted by A371130, strict A371128. %Y A371169 The RHS is A370820, for prime factors instead of divisors A303975. %Y A371169 The complement is A371168, counted by A371173. %Y A371169 The opposite version is A371170. %Y A371169 The version for prime factors instead of divisors on the RHS is A319899. %Y A371169 Choosable partitions: A239312 (A368110), A355740 (A370320), A370592 (A368100), A370593 (A355529). %Y A371169 A000005 counts divisors. %Y A371169 A001221 counts distinct prime factors. %Y A371169 A027746 lists prime factors, indices A112798, length A001222. %Y A371169 A355731 counts choices of a divisor of each prime index, firsts A355732. %Y A371169 Cf. A003963, A355737, A355739, A355741, A370808, A370813, A370814, A371127. %K A371169 nonn %O A371169 1,2 %A A371169 _Gus Wiseman_, Mar 16 2024