cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A371177 Positive integers whose prime indices include all distinct divisors of all prime indices.

This page as a plain text file.
%I A371177 #7 Mar 19 2024 08:38:03
%S A371177 1,2,4,6,8,10,12,16,18,20,22,24,30,32,34,36,40,42,44,48,50,54,60,62,
%T A371177 64,66,68,72,80,82,84,88,90,96,100,102,108,110,118,120,124,126,128,
%U A371177 132,134,136,144,150,160,162,164,166,168,170,176,180,186,192,198,200
%N A371177 Positive integers whose prime indices include all distinct divisors of all prime indices.
%C A371177 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
%C A371177 Also positive integers with as many distinct prime factors (A001221) as distinct divisors of prime indices (A370820).
%F A371177 A001221(a(n)) = A370820(a(n)).
%e A371177 The terms together with their prime indices begin:
%e A371177     1: {}
%e A371177     2: {1}
%e A371177     4: {1,1}
%e A371177     6: {1,2}
%e A371177     8: {1,1,1}
%e A371177    10: {1,3}
%e A371177    12: {1,1,2}
%e A371177    16: {1,1,1,1}
%e A371177    18: {1,2,2}
%e A371177    20: {1,1,3}
%e A371177    22: {1,5}
%e A371177    24: {1,1,1,2}
%e A371177    30: {1,2,3}
%e A371177    32: {1,1,1,1,1}
%e A371177    34: {1,7}
%e A371177    36: {1,1,2,2}
%e A371177    40: {1,1,1,3}
%e A371177    42: {1,2,4}
%e A371177    44: {1,1,5}
%e A371177    48: {1,1,1,1,2}
%t A371177 Select[Range[100],PrimeNu[#]==Length[Union @@ Divisors/@PrimePi/@First/@If[#==1,{},FactorInteger[#]]]&]
%Y A371177 The LHS is A001221, distinct case of A001222.
%Y A371177 The RHS is A370820, for prime factors A303975.
%Y A371177 For bigomega on the LHS we have A370802, counted by A371130.
%Y A371177 For divisors on the LHS we have A371165, counted by A371172.
%Y A371177 Partitions of this type are counted by A371178, strict A371128.
%Y A371177 The complement is A371179, counted by A371132.
%Y A371177 A000005 counts divisors.
%Y A371177 A000041 counts integer partitions, strict A000009.
%Y A371177 A008284 counts partitions by length.
%Y A371177 A305148 counts partitions without divisors, strict A303362, ranks A316476.
%Y A371177 Cf. A000837, A003963, A239312, A285573, A355529, A370813, A371168.
%K A371177 nonn
%O A371177 1,2
%A A371177 _Gus Wiseman_, Mar 18 2024