This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A371177 #7 Mar 19 2024 08:38:03 %S A371177 1,2,4,6,8,10,12,16,18,20,22,24,30,32,34,36,40,42,44,48,50,54,60,62, %T A371177 64,66,68,72,80,82,84,88,90,96,100,102,108,110,118,120,124,126,128, %U A371177 132,134,136,144,150,160,162,164,166,168,170,176,180,186,192,198,200 %N A371177 Positive integers whose prime indices include all distinct divisors of all prime indices. %C A371177 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. %C A371177 Also positive integers with as many distinct prime factors (A001221) as distinct divisors of prime indices (A370820). %F A371177 A001221(a(n)) = A370820(a(n)). %e A371177 The terms together with their prime indices begin: %e A371177 1: {} %e A371177 2: {1} %e A371177 4: {1,1} %e A371177 6: {1,2} %e A371177 8: {1,1,1} %e A371177 10: {1,3} %e A371177 12: {1,1,2} %e A371177 16: {1,1,1,1} %e A371177 18: {1,2,2} %e A371177 20: {1,1,3} %e A371177 22: {1,5} %e A371177 24: {1,1,1,2} %e A371177 30: {1,2,3} %e A371177 32: {1,1,1,1,1} %e A371177 34: {1,7} %e A371177 36: {1,1,2,2} %e A371177 40: {1,1,1,3} %e A371177 42: {1,2,4} %e A371177 44: {1,1,5} %e A371177 48: {1,1,1,1,2} %t A371177 Select[Range[100],PrimeNu[#]==Length[Union @@ Divisors/@PrimePi/@First/@If[#==1,{},FactorInteger[#]]]&] %Y A371177 The LHS is A001221, distinct case of A001222. %Y A371177 The RHS is A370820, for prime factors A303975. %Y A371177 For bigomega on the LHS we have A370802, counted by A371130. %Y A371177 For divisors on the LHS we have A371165, counted by A371172. %Y A371177 Partitions of this type are counted by A371178, strict A371128. %Y A371177 The complement is A371179, counted by A371132. %Y A371177 A000005 counts divisors. %Y A371177 A000041 counts integer partitions, strict A000009. %Y A371177 A008284 counts partitions by length. %Y A371177 A305148 counts partitions without divisors, strict A303362, ranks A316476. %Y A371177 Cf. A000837, A003963, A239312, A285573, A355529, A370813, A371168. %K A371177 nonn %O A371177 1,2 %A A371177 _Gus Wiseman_, Mar 18 2024