This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A371178 #19 Mar 18 2024 11:45:47 %S A371178 1,1,1,2,3,4,6,9,12,16,21,28,37,48,62,80,101,127,162,202,252,312,386, %T A371178 475,585,713,869,1056,1278,1541,1859,2232,2675,3196,3811,4534,5386, %U A371178 6379,7547,8908,10497,12345,14501,16999,19897,23253,27135,31618,36796,42756 %N A371178 Number of integer partitions of n containing all divisors of all parts. %C A371178 The Heinz numbers of these partitions are given by A371177. %C A371178 Also partitions such that the number of distinct parts is equal to the number of distinct divisors of parts. %e A371178 The partition (4,2,1,1) contains all distinct divisors {1,2,4}, so is counted under a(8). %e A371178 The partition (4,4,3,2,2,2,1) contains all distinct divisors {1,2,3,4} so is counted under 4 + 4 + 3 + 2 + 2 + 2 + 1 = 18. - _David A. Corneth_, Mar 18 2024 %e A371178 The a(0) = 1 through a(8) = 12 partitions: %e A371178 () (1) (11) (21) (31) (221) (51) (331) (71) %e A371178 (111) (211) (311) (321) (421) (521) %e A371178 (1111) (2111) (2211) (511) (3221) %e A371178 (11111) (3111) (2221) (3311) %e A371178 (21111) (3211) (4211) %e A371178 (111111) (22111) (5111) %e A371178 (31111) (22211) %e A371178 (211111) (32111) %e A371178 (1111111) (221111) %e A371178 (311111) %e A371178 (2111111) %e A371178 (11111111) %t A371178 Table[Length[Select[IntegerPartitions[n],SubsetQ[#,Union@@Divisors/@#]&]],{n,0,30}] %Y A371178 The LHS is represented by A001221, distinct case of A001222. %Y A371178 For partitions with no divisors of parts we have A305148, ranks A316476. %Y A371178 The RHS is represented by A370820, for prime factors A303975. %Y A371178 The strict case is A371128. %Y A371178 Counting all parts on the LHS gives A371130, ranks A370802. %Y A371178 The complement is counted by A371132. %Y A371178 For submultisets instead of distinct parts we have A371172, ranks A371165. %Y A371178 These partitions have ranks A371177. %Y A371178 A000005 counts divisors. %Y A371178 A000041 counts integer partitions, strict A000009. %Y A371178 A008284 counts partitions by length. %Y A371178 Cf. A000837, A003963, A239312, A285573, A305148, A319055, A355529, A370803, A370808, A370813, A371168, A371171, A371173. %K A371178 nonn %O A371178 0,4 %A A371178 _Gus Wiseman_, Mar 17 2024