cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A371185 Indices of the cubefull numbers in the sequence of powerful numbers.

This page as a plain text file.
%I A371185 #14 Sep 13 2024 08:03:57
%S A371185 1,3,5,7,8,11,13,17,18,23,25,26,30,34,38,41,42,45,49,54,55,61,63,72,
%T A371185 77,78,80,82,83,87,89,93,99,105,106,113,115,116,127,128,130,137,140,
%U A371185 148,151,153,161,164,166,179,185,186,188,192,196,201,206,221,227,234
%N A371185 Indices of the cubefull numbers in the sequence of powerful numbers.
%H A371185 Amiram Eldar, <a href="/A371185/b371185.txt">Table of n, a(n) for n = 1..10000</a>
%H A371185 <a href="/index/Pow#powerful">Index entries for sequences related to powerful numbers</a>.
%F A371185 A001694(a(n)) = A036966(n).
%F A371185 a(n) ~ c * n^(3/2), where c = A090699 / A362974^(3/2) = 0.216089803749...
%e A371185 The first 5 powerful numbers are 1, 4, 8, 9, and 16. The 1st, 3rd, and 5th, 1, 8, and 16, are also cubefull numbers. Therefore, the first 3 terms of this sequence are 1, 3, and 5.
%t A371185 powQ[n_, emin_] := n == 1 || AllTrue[FactorInteger[n], Last[#] >= emin &]; Position[Select[Range[20000], powQ[#, 2] &], _?(powQ[#1, 3] &), Heads -> False] // Flatten
%o A371185 (PARI) ispow(n, emin) = n == 1 || vecmin(factor(n)[, 2]) >= emin;
%o A371185 lista(kmax) = {my(f, c = 0); for(k = 1, kmax, if(ispow(k, 2), c++; if(ispow(k, 3), print1(c, ", "))));}
%o A371185 (Python)
%o A371185 from math import isqrt, gcd
%o A371185 from sympy import mobius, integer_nthroot, factorint
%o A371185 def A371185(n):
%o A371185     def squarefreepi(n): return int(sum(mobius(k)*(n//k**2) for k in range(1, isqrt(n)+1)))
%o A371185     def bisection(f,kmin=0,kmax=1):
%o A371185         while f(kmax) > kmax: kmax <<= 1
%o A371185         while kmax-kmin > 1:
%o A371185             kmid = kmax+kmin>>1
%o A371185             if f(kmid) <= kmid:
%o A371185                 kmax = kmid
%o A371185             else:
%o A371185                 kmin = kmid
%o A371185         return kmax
%o A371185     def f(x):
%o A371185         c = n+x
%o A371185         for w in range(1,integer_nthroot(x,5)[0]+1):
%o A371185             if all(d<=1 for d in factorint(w).values()):
%o A371185                 for y in range(1,integer_nthroot(z:=x//w**5,4)[0]+1):
%o A371185                     if gcd(w,y)==1 and all(d<=1 for d in factorint(y).values()):
%o A371185                         c -= integer_nthroot(z//y**4,3)[0]
%o A371185         return c
%o A371185     c, l, m = 0, 0, bisection(f,n,n)
%o A371185     j = isqrt(m)
%o A371185     while j>1:
%o A371185         k2 = integer_nthroot(m//j**2,3)[0]+1
%o A371185         w = squarefreepi(k2-1)
%o A371185         c += j*(w-l)
%o A371185         l, j = w, isqrt(m//k2**3)
%o A371185     c += squarefreepi(integer_nthroot(m,3)[0])-l
%o A371185     return c # _Chai Wah Wu_, Sep 12 2024
%Y A371185 Cf. A001694, A036966.
%Y A371185 Cf. A090699, A362974.
%Y A371185 Similar sequences: A361936, A371186.
%K A371185 nonn,easy
%O A371185 1,2
%A A371185 _Amiram Eldar_, Mar 14 2024