This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A371185 #14 Sep 13 2024 08:03:57 %S A371185 1,3,5,7,8,11,13,17,18,23,25,26,30,34,38,41,42,45,49,54,55,61,63,72, %T A371185 77,78,80,82,83,87,89,93,99,105,106,113,115,116,127,128,130,137,140, %U A371185 148,151,153,161,164,166,179,185,186,188,192,196,201,206,221,227,234 %N A371185 Indices of the cubefull numbers in the sequence of powerful numbers. %H A371185 Amiram Eldar, <a href="/A371185/b371185.txt">Table of n, a(n) for n = 1..10000</a> %H A371185 <a href="/index/Pow#powerful">Index entries for sequences related to powerful numbers</a>. %F A371185 A001694(a(n)) = A036966(n). %F A371185 a(n) ~ c * n^(3/2), where c = A090699 / A362974^(3/2) = 0.216089803749... %e A371185 The first 5 powerful numbers are 1, 4, 8, 9, and 16. The 1st, 3rd, and 5th, 1, 8, and 16, are also cubefull numbers. Therefore, the first 3 terms of this sequence are 1, 3, and 5. %t A371185 powQ[n_, emin_] := n == 1 || AllTrue[FactorInteger[n], Last[#] >= emin &]; Position[Select[Range[20000], powQ[#, 2] &], _?(powQ[#1, 3] &), Heads -> False] // Flatten %o A371185 (PARI) ispow(n, emin) = n == 1 || vecmin(factor(n)[, 2]) >= emin; %o A371185 lista(kmax) = {my(f, c = 0); for(k = 1, kmax, if(ispow(k, 2), c++; if(ispow(k, 3), print1(c, ", "))));} %o A371185 (Python) %o A371185 from math import isqrt, gcd %o A371185 from sympy import mobius, integer_nthroot, factorint %o A371185 def A371185(n): %o A371185 def squarefreepi(n): return int(sum(mobius(k)*(n//k**2) for k in range(1, isqrt(n)+1))) %o A371185 def bisection(f,kmin=0,kmax=1): %o A371185 while f(kmax) > kmax: kmax <<= 1 %o A371185 while kmax-kmin > 1: %o A371185 kmid = kmax+kmin>>1 %o A371185 if f(kmid) <= kmid: %o A371185 kmax = kmid %o A371185 else: %o A371185 kmin = kmid %o A371185 return kmax %o A371185 def f(x): %o A371185 c = n+x %o A371185 for w in range(1,integer_nthroot(x,5)[0]+1): %o A371185 if all(d<=1 for d in factorint(w).values()): %o A371185 for y in range(1,integer_nthroot(z:=x//w**5,4)[0]+1): %o A371185 if gcd(w,y)==1 and all(d<=1 for d in factorint(y).values()): %o A371185 c -= integer_nthroot(z//y**4,3)[0] %o A371185 return c %o A371185 c, l, m = 0, 0, bisection(f,n,n) %o A371185 j = isqrt(m) %o A371185 while j>1: %o A371185 k2 = integer_nthroot(m//j**2,3)[0]+1 %o A371185 w = squarefreepi(k2-1) %o A371185 c += j*(w-l) %o A371185 l, j = w, isqrt(m//k2**3) %o A371185 c += squarefreepi(integer_nthroot(m,3)[0])-l %o A371185 return c # _Chai Wah Wu_, Sep 12 2024 %Y A371185 Cf. A001694, A036966. %Y A371185 Cf. A090699, A362974. %Y A371185 Similar sequences: A361936, A371186. %K A371185 nonn,easy %O A371185 1,2 %A A371185 _Amiram Eldar_, Mar 14 2024