A371190 The smaller of a pair of successive powerful numbers without a nonsquarefree number between them.
1, 4, 8, 25, 32, 288, 675, 968, 1152, 1369, 2700, 9800, 12167, 39200, 48668, 70225, 235224, 332928, 465124, 1331712, 1825200, 5724500, 7300800, 11309768, 78960996, 189750625, 263672644, 384199200, 592192224, 912670088, 1536796800, 2368768896, 4931691075, 5425069447, 8957108164
Offset: 1
Keywords
Examples
1 is a term since 1 and 4 are successive powerful numbers and the numbers between them, 2 and 3, are both squarefree.
Links
Programs
-
Mathematica
seq[max_] := Module[{pows = Union[Flatten[Table[i^2*j^3, {j, 1, Surd[max, 3]}, {i, 1, Sqrt[max/j^3]}]]], s = {}}, Do[If[AllTrue[Range[pows[[k]] + 1, pows[[k + 1]] - 1], SquareFreeQ], AppendTo[s, pows[[k]]]], {k, 1, Length[pows] - 1}]; s]; seq[10^10]
-
PARI
lista(mx) = {my(s = List(), is); for(j = 1, sqrtnint(mx, 3), for(i = 1, sqrtint(mx\j^3), listput(s, i^2 * j^3))); s = Set(s); for(i = 1, #s - 1, is = 1; for(k = s[i]+1, s[i+1]-1, if(!issquarefree(k), is = 0; break)); if(is, print1(s[i], ", ")));}
-
Python
from math import isqrt from sympy import mobius, integer_nthroot def A371190_gen(): # generator of terms def squarefreepi(n): return int(sum(mobius(k)*(n//k**2) for k in range(1, isqrt(n)+1))) def bisection(f,kmin=0,kmax=1): while f(kmax) > kmax: kmax <<= 1 while kmax-kmin > 1: kmid = kmax+kmin>>1 if f(kmid) <= kmid: kmax = kmid else: kmin = kmid return kmax def f(x): c, l, j = x-squarefreepi(integer_nthroot(x,3)[0]), 0, isqrt(x) while j>1: k2 = integer_nthroot(x//j**2,3)[0]+1 w = squarefreepi(k2-1) c -= j*(w-l) l, j = w, isqrt(x//k2**3) return c+l m, w = 1, 1 for n in count(2): k = bisection(lambda x:f(x)+n,m,m) if (a:=squarefreepi(k))-w==k-1-m: yield m m, w = k, a # Chai Wah Wu, Sep 15 2024