This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A371194 #22 Apr 04 2024 10:14:17 %S A371194 3,5,103,823,10061,157427,2439991,49100173,1123465789,31148488997, %T A371194 816695154683,25401384476191,859466293047623,33373273595699879, %U A371194 1234907033823334111,51892599148660469993,2322058300483667372689,115713970660820468376569,5533344265927977839343539 %N A371194 a(n) = smallest penholodigital prime in base n. %C A371194 a(n) is the smallest prime whose base-n representation is zeroless and contains all nonzero digits (i.e., 1,...,n-1) at least once. %H A371194 Chai Wah Wu, <a href="/A371194/b371194.txt">Table of n, a(n) for n = 2..387</a> %H A371194 Chai Wah Wu, <a href="https://arxiv.org/abs/2403.20304">Pandigital and penholodigital numbers</a>, arXiv:2403.20304 [math.GM], 2024. See p. 3. %F A371194 a(n) >= A023811(n). %e A371194 The corresponding base-n representations are: %e A371194 n a(n) in base n %e A371194 ------------------------ %e A371194 2 11 %e A371194 3 12 %e A371194 4 1213 %e A371194 5 11243 %e A371194 6 114325 %e A371194 7 1223654 %e A371194 8 11235467 %e A371194 9 112345687 %e A371194 10 1123465789 %e A371194 11 1223456789a %e A371194 12 11234567a98b %e A371194 13 112345678abc9 %e A371194 14 112345678cadb9 %e A371194 15 1223456789adcbe %e A371194 16 1123456789abcedf %e A371194 17 1123456789abdgfec %e A371194 18 1123456789abcehfgd %e A371194 19 1223456789abcdefghi %e A371194 20 1123456789abcdefhigj %e A371194 21 1123456789abcdefgihjk %e A371194 22 1123456789abcdefgjhikl %e A371194 23 1223456789abcdefghjimlk %e A371194 24 1123456789abcdefghkmijln %e A371194 25 1123456789abcdefghijklnom %e A371194 26 1123456789abcdefghijkmnpol %e A371194 27 1223456789abcdefghijklmqnop %e A371194 28 1123456789abcdefghijklmnqorp %e A371194 29 1123456789abcdefghijklmnrqspo %e A371194 30 1123456789abcdefghijklmnosqprt %e A371194 31 1223456789abcdefghijklmnoptusrq %e A371194 32 1123456789abcdefghijklmnopqrvust %e A371194 33 1123456789abcdefghijklmnopqsrtuvw %e A371194 34 1123456789abcdefghijklmnopqrstuxwv %e A371194 35 1223456789abcdefghijklmnopqrstuxwvy %e A371194 36 1123456789abcdefghijklmnopqrstuwzyxv %o A371194 (Python) %o A371194 from math import gcd %o A371194 from sympy import nextprime %o A371194 from sympy.ntheory import digits %o A371194 def A371194(n): %o A371194 m, j = 1, 0 %o A371194 if n > 3: %o A371194 for j in range(1,n): %o A371194 if gcd((n*(n-1)>>1)+j,n-1) == 1: %o A371194 break %o A371194 if j == 0: %o A371194 for i in range(2,n): %o A371194 m = n*m+i %o A371194 elif j == 1: %o A371194 for i in range(1,n): %o A371194 m = n*m+i %o A371194 else: %o A371194 for i in range(2,1+j): %o A371194 m = n*m+i %o A371194 for i in range(j,n): %o A371194 m = n*m+i %o A371194 m -= 1 %o A371194 while True: %o A371194 s = digits(m:=nextprime(m),n)[1:] %o A371194 if 0 not in s and len(set(s))==n-1: %o A371194 return m %Y A371194 Cf. A023811, A185122. %K A371194 nonn %O A371194 2,1 %A A371194 _Chai Wah Wu_, Mar 14 2024