cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A371238 Euler totient function applied to the binary palindromes of even length.

This page as a plain text file.
%I A371238 #8 Mar 16 2024 04:19:43
%S A371238 2,6,8,20,24,32,36,84,96,80,108,96,144,120,128,324,320,288,420,336,
%T A371238 360,476,384,512,432,560,540,504,632,480,600,1364,960,1344,1296,1536,
%U A371238 1440,1296,1584,1296,1772,1512,1280,1760,1440,1980,1800,1600,1800,2016,1536,1872
%N A371238 Euler totient function applied to the binary palindromes of even length.
%H A371238 Amiram Eldar, <a href="/A371238/b371238.txt">Table of n, a(n) for n = 1..10000</a>
%H A371238 William D. Banks and Igor E. Shparlinski, <a href="http://dx.doi.org/10.4064/ba54-2-1">Average value of the Euler function on binary palindromes</a>, Bulletin of the Polish Academy of Sciences, Mathematics, Vol. 54, No. 2 (2006), pp. 95-101; <a href="https://eudml.org/doc/286495">alternative link</a>.
%F A371238 a(n) = A000010(A048701(n)).
%F A371238 (1/N(k)) * Sum_{j, A070939(A048701(j)) = 2*k} a(j) = 3 * 2^(2*k-2) * (6/Pi^2 + O((k/log(k))^(-1/4))), where N(k) = Sum_{j, A070939(A048701(j)) = 2*k} 1 (Banks and Shparlinski, 2006).
%t A371238 EulerPhi[Select[Range[5000], EvenQ[Length[(d = IntegerDigits[#, 2])]] && PalindromeQ[d] &]]
%o A371238 (PARI) is(n) = Vecrev(n = binary(n)) == n && !((#n)%2);
%o A371238 lista(kmax) = for(k = 1, kmax, if(is(k), print1(eulerphi(k), ", ")));
%Y A371238 Cf. A000010, A006995, A048701, A059956, A070939.
%K A371238 nonn,base,easy
%O A371238 1,1
%A A371238 _Amiram Eldar_, Mar 16 2024