This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A371252 #20 Aug 27 2024 14:58:15 %S A371252 1,9,297,13833,748521,44127009,2750141241,178218782793,11887871843817, %T A371252 810822837267729,56289612791763297,3964402453931011233, %U A371252 282558393168537751929,20342533966643026042641,1477174422125162468055897,108064155440237168218117833,7956914294959071176435002857 %N A371252 Number of derangements of a multiset comprising n repeats of a 4-element set. %C A371252 A deck has 4 suits of n cards each. The deck is shuffled and dealt into 4 hands of n cards each. A match occurs for every card in the i-th hand of suit i. a(n) is the number of ways of achieving no matches. The probability of no matches is a(n)/((4n)!/n!^4). %H A371252 Jeremy Tan, <a href="/A371252/b371252.txt">Table of n, a(n) for n = 0..200</a> %H A371252 Shalosh B. Ekhad, Christoph Koutschan and Doron Zeilberger, <a href="https://arxiv.org/abs/2101.10147">There are EXACTLY 1493804444499093354916284290188948031229880469556 Ways to Derange a Standard Deck of Cards (ignoring suits) [and many other such useful facts]</a>, arXiv:2101.10147 [math.CO], 2021. %H A371252 Shalosh B. Ekhad, <a href="https://sites.math.rutgers.edu/~zeilberg/tokhniot/oMultiDer2.txt">Terms, recurrences and asymptotics for multiset derangements</a>. %H A371252 S. Even and J. Gillis, <a href="https://doi.org/10.1017/S0305004100052154">Derangements and Laguerre polynomials</a>, Mathematical Proceedings of the Cambridge Philosophical Society, Volume 79, Issue 1, January 1976, pp. 135-143. %H A371252 B. H. Margolius, <a href="http://www.jstor.org/stable/3219303">The Dinner-Diner Matching Problem</a>, Mathematics Magazine, 76 (2003), pp. 107-118. %H A371252 <a href="/index/Ca#cardmatch">Index entries for sequences related to card matching</a> %F A371252 a(n) = Integral_{x=0..oo} exp(-x)*L_n(x)^4 dx, where L_n(x) is the Laguerre polynomial of degree n (Even and Gillis). %F A371252 D-finite with recurrence n^3*(2*n-1)*(5*n-6)*(10*n-13)*a(n) = (8300*n^6 - 37350*n^5 + 66698*n^4 - 60393*n^3 + 29297*n^2 - 7263*n + 738)*a(n-1) - (n-1)*(16300*n^5 - 81500*n^4 + 151553*n^3 - 123364*n^2 + 39501*n - 4338)*a(n-2) + 162*(n-2)^3*(n-1)*(5*n-1)*(10*n-3)*a(n-3) (Ekhad). %F A371252 a(n) = [(w*x*y*z)^n] ((x+y+z)*(w+y+z)*(w+x+z)*(w+x+y))^n. %F A371252 a(n) ~ 3^(4*n + 3) / (32 * Pi^(3/2) * n^(3/2)). - _Vaclav Kotesovec_, Mar 29 2024 %e A371252 There are a(13) = 20342533966643026042641 bridge deals where North, South, East and West are void in clubs, diamonds, hearts and spades, respectively. %t A371252 Table[Integrate[Exp[-x] LaguerreL[n, x]^4, {x, 0, Infinity}], {n, 0, 16}] %t A371252 (* or *) %t A371252 rec = n^3(2n-1)(5n-6)(10n-13) a[n] == (8300n^6-37350n^5+66698n^4-60393n^3+29297n^2-7263n+738) a[n-1] - (n-1)(16300n^5-81500n^4+151553n^3-123364n^2+39501n-4338) a[n-2] + 162(n-2)^3(n-1)(5n-1)(10n-3) a[n-3]; %t A371252 RecurrenceTable[{rec, a[0] == 1, a[1] == 9, a[2] == 297}, a, {n, 0, 16}] %o A371252 (Python) %o A371252 def A371252(n): %o A371252 l = [1, 9, 297] %o A371252 for k in range(3, n+1): %o A371252 m1 = (((((8300*k-37350)*k+66698)*k-60393)*k+29297)*k-7263)*k+738 %o A371252 m2 = (k-1)*(((((16300*k-81500)*k+151553)*k-123364)*k+39501)*k-4338) %o A371252 m3 = 162*(k-2)**3*(k-1)*(5*k-1)*(10*k-3) %o A371252 r = (m1*l[-1] - m2*l[-2] + m3*l[-3]) // (k**3*(2*k-1)*(5*k-6)*(10*k-13)) %o A371252 l.append(r) %o A371252 return l[n] %Y A371252 Column k=0 of A059068. The analogous sequence with 3 suits is A000172 and that with 2 suits is A000012. %Y A371252 Column k=4 of A372307. %Y A371252 Cf. A008290, A059056-A059071. %K A371252 nonn %O A371252 0,2 %A A371252 _Jeremy Tan_, Mar 16 2024