A371254 Number of vertices formed when n equally spaced points are placed around a circle and all pairs of points are joined by an interior arc whose radius equals the circle's radius.
1, 2, 4, 4, 15, 7, 70, 64, 208, 220, 550, 397, 1131, 1162, 1981, 2128, 3723, 3259, 5966, 6000, 9010, 9240, 13524, 12745, 19325, 19266, 26434, 26684, 35931, 33301, 47368, 47616, 61216, 61676, 78330, 76789, 98901, 99674, 122656, 123560
Offset: 1
Keywords
Links
- B. Poonen and M. Rubinstein, The Number of Intersection Points Made by the Diagonals of a Regular Polygon, arXiv:math/9508209v3 [math.MG], 1995-2006.
- Scott R. Shannon, Image for n = 3.
- Scott R. Shannon, Image for n = 4.
- Scott R. Shannon, Image for n = 5.
- Scott R. Shannon, Image for n = 6.
- Scott R. Shannon, Image for n = 7.
- Scott R. Shannon, Image for n = 8.
- Scott R. Shannon, Image for n = 9.
- Scott R. Shannon, Image for n = 10.
- Scott R. Shannon, Image for n = 11.
- Scott R. Shannon, Image for n = 12.
- Scott R. Shannon, Image for n = 15. Note the 5 arc intersections shown in green.
- Scott R. Shannon, Image for n = 20.
- Scott R. Shannon, Image for n = 24.
- Scott R. Shannon, Image for n = 30. Note the 9 arc intersections shown in violet.
Comments