cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A371276 Nonnegative numbers whose balanced ternary expansions have no consecutive equal digits (with offset 0).

This page as a plain text file.
%I A371276 #10 Mar 18 2024 13:24:09
%S A371276 0,1,2,3,6,7,8,10,17,19,20,21,24,25,29,30,51,52,56,57,60,61,62,64,71,
%T A371276 73,74,75,87,88,89,91,152,154,155,156,168,169,170,172,179,181,182,183,
%U A371276 186,187,191,192,213,214,218,219,222,223,224,226,260,262,263,264
%N A371276 Nonnegative numbers whose balanced ternary expansions have no consecutive equal digits (with offset 0).
%C A371276 Although this is a list, we use an offset equal to 0; thus:
%C A371276 - the binary expansion of n has the same number of digits as the balanced ternary expansion of a(n) (ignoring leading zeros),
%C A371276 - for n > 0 with binary expansion (b_1, ..., b_w) (where b_1 = 1), let's say that the balanced ternary expansion of a(n) is (t_1, ..., t_w) (where t_1 = 1):
%C A371276     - for i = 2..w:
%C A371276         - if b_i = 0, then t_i = min({-1, 0, +1} \ {t_{i-1}}),
%C A371276         - otherwise, t_i = max({-1, 0, +1} \ {t_{i-1}}).
%C A371276 For any w > 0, there are 2^(w-1) positive terms with w balanced ternary digits.
%H A371276 Rémy Sigrist, <a href="/A371276/b371276.txt">Table of n, a(n) for n = 0..8191</a>
%e A371276 The first terms, alongside their balanced ternary expansions, are:
%e A371276   n   a(n)  bter(a(n))
%e A371276   --  ----  ----------
%e A371276    1     0           0
%e A371276    2     1           1
%e A371276    3     2          1T
%e A371276    4     3          10
%e A371276    5     6         1T0
%e A371276    6     7         1T1
%e A371276    7     8         10T
%e A371276    8    10         101
%e A371276    9    17        1T0T
%e A371276   10    19        1T01
%e A371276   11    20        1T1T
%e A371276   12    21        1T10
%e A371276   13    24        10T0
%e A371276   14    25        10T1
%e A371276   15    29        101T
%e A371276   16    30        1010
%o A371276 (PARI) is(n) = { while (n, my (d = centerlift(Mod(n, 3))); n = (n-d)/3; if (d==centerlift(Mod(n, 3)), return (0););); return (1); }
%o A371276 (PARI) a(n) = { my (d = binary(n)); for (i = 2, #d, d[i] = setminus([-1,0,1], [d[i-1]])[1+d[i]];); fromdigits(d, 3); }
%Y A371276 See A031941 for a similar sequence.
%Y A371276 Cf. A134021.
%K A371276 nonn,base
%O A371276 0,3
%A A371276 _Rémy Sigrist_, Mar 17 2024