This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A371283 #12 Aug 25 2024 19:40:23 %S A371283 2,6,10,22,34,42,62,82,118,134,166,218,230,254,314,358,382,390,422, %T A371283 482,554,566,662,706,734,798,802,862,922,1018,1094,1126,1174,1198, %U A371283 1234,1418,1478,1546,1594,1718,1754,1838,1914,1934,1982,2062,2126,2134,2174,2306 %N A371283 Heinz numbers of sets of divisors of positive integers. Numbers whose prime indices form the set of divisors of some positive integer. %C A371283 The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions. %C A371283 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. %H A371283 Joseph Likar, <a href="/A371283/b371283.txt">Table of n, a(n) for n = 1..10000</a> %e A371283 The terms together with their prime indices begin: %e A371283 2: {1} %e A371283 6: {1,2} %e A371283 10: {1,3} %e A371283 22: {1,5} %e A371283 34: {1,7} %e A371283 42: {1,2,4} %e A371283 62: {1,11} %e A371283 82: {1,13} %e A371283 118: {1,17} %e A371283 134: {1,19} %e A371283 166: {1,23} %e A371283 218: {1,29} %e A371283 230: {1,3,9} %e A371283 254: {1,31} %e A371283 314: {1,37} %e A371283 358: {1,41} %e A371283 382: {1,43} %e A371283 390: {1,2,3,6} %t A371283 prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n], {p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A371283 Select[Range[2,100],SameQ[prix[#],Divisors[Last[prix[#]]]]&] %Y A371283 Partitions of this type are counted by A054973. %Y A371283 The unsorted version is A275700. %Y A371283 These numbers have products A371286, unsorted version A371285. %Y A371283 Squarefree case of A371288, counted by A371284. %Y A371283 A000005 counts divisors. %Y A371283 A001221 counts distinct prime factors. %Y A371283 A027746 lists prime factors, A112798 indices, length A001222. %Y A371283 A355731 counts choices of a divisor of each prime index, firsts A355732. %Y A371283 A355741 counts choices of a prime factor of each prime index. %Y A371283 Cf. A000720, A005179, A007416, A034729, A370820, A371131, A371177. %K A371283 nonn %O A371283 1,1 %A A371283 _Gus Wiseman_, Mar 21 2024