cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A371283 Heinz numbers of sets of divisors of positive integers. Numbers whose prime indices form the set of divisors of some positive integer.

This page as a plain text file.
%I A371283 #12 Aug 25 2024 19:40:23
%S A371283 2,6,10,22,34,42,62,82,118,134,166,218,230,254,314,358,382,390,422,
%T A371283 482,554,566,662,706,734,798,802,862,922,1018,1094,1126,1174,1198,
%U A371283 1234,1418,1478,1546,1594,1718,1754,1838,1914,1934,1982,2062,2126,2134,2174,2306
%N A371283 Heinz numbers of sets of divisors of positive integers. Numbers whose prime indices form the set of divisors of some positive integer.
%C A371283 The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
%C A371283 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
%H A371283 Joseph Likar, <a href="/A371283/b371283.txt">Table of n, a(n) for n = 1..10000</a>
%e A371283 The terms together with their prime indices begin:
%e A371283      2: {1}
%e A371283      6: {1,2}
%e A371283     10: {1,3}
%e A371283     22: {1,5}
%e A371283     34: {1,7}
%e A371283     42: {1,2,4}
%e A371283     62: {1,11}
%e A371283     82: {1,13}
%e A371283    118: {1,17}
%e A371283    134: {1,19}
%e A371283    166: {1,23}
%e A371283    218: {1,29}
%e A371283    230: {1,3,9}
%e A371283    254: {1,31}
%e A371283    314: {1,37}
%e A371283    358: {1,41}
%e A371283    382: {1,43}
%e A371283    390: {1,2,3,6}
%t A371283 prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n], {p_,k_}:>Table[PrimePi[p],{k}]]]];
%t A371283 Select[Range[2,100],SameQ[prix[#],Divisors[Last[prix[#]]]]&]
%Y A371283 Partitions of this type are counted by A054973.
%Y A371283 The unsorted version is A275700.
%Y A371283 These numbers have products A371286, unsorted version A371285.
%Y A371283 Squarefree case of A371288, counted by A371284.
%Y A371283 A000005 counts divisors.
%Y A371283 A001221 counts distinct prime factors.
%Y A371283 A027746 lists prime factors, A112798 indices, length A001222.
%Y A371283 A355731 counts choices of a divisor of each prime index, firsts A355732.
%Y A371283 A355741 counts choices of a prime factor of each prime index.
%Y A371283 Cf. A000720, A005179, A007416, A034729, A370820, A371131, A371177.
%K A371283 nonn
%O A371283 1,1
%A A371283 _Gus Wiseman_, Mar 21 2024