A371284 Number of integer partitions of n whose distinct parts form the set of divisors of some number.
0, 1, 1, 2, 3, 4, 5, 8, 9, 11, 12, 16, 18, 23, 25, 32, 36, 42, 47, 57, 62, 73, 81, 96, 106, 123, 132, 154, 168, 190, 207, 240, 259, 293, 317, 359, 388, 434, 469, 529, 574, 635, 688, 768, 826, 915, 987, 1093, 1181, 1302, 1397, 1540, 1662, 1818, 1959, 2149, 2309
Offset: 0
Keywords
Examples
The partition y = (10,5,5,5,2,2,1) has distinct parts {1,2,5,10}, which form the set of divisors of 10, so y is counted under a(30). The a(1) = 1 through a(8) = 9 partitions: (1) (11) (21) (31) (221) (51) (331) (71) (111) (211) (311) (2211) (421) (3311) (1111) (2111) (3111) (511) (4211) (11111) (21111) (2221) (5111) (111111) (22111) (22211) (31111) (221111) (211111) (311111) (1111111) (2111111) (11111111)
Crossrefs
These partitions have ranks A371288.
Programs
-
Mathematica
Table[Length[Select[IntegerPartitions[n], Union[#]==Divisors[Max[#]]&]],{n,0,30}]
Comments