cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A371285 Heinz number of the multiset union of the divisor sets of each prime index of n.

This page as a plain text file.
%I A371285 #9 Mar 22 2024 12:33:39
%S A371285 1,2,6,4,10,12,42,8,36,20,22,24,390,84,60,16,34,72,798,40,252,44,230,
%T A371285 48,100,780,216,168,1914,120,62,32,132,68,420,144,101010,1596,2340,80,
%U A371285 82,504,4386,88,360,460,5170,96,1764,200,204,1560,42294,432,220,336
%N A371285 Heinz number of the multiset union of the divisor sets of each prime index of n.
%C A371285 The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
%C A371285 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
%F A371285 If n = prime(x_1)*...*prime(x_k) then a(n) = A275700(x_1)*...*A275700(x_k).
%e A371285 The prime indices of 105 are {2,3,4}, with divisor sets {{1,2},{1,3},{1,2,4}}, with multiset union {1,1,1,2,2,3,4}, with Heinz number 2520, so a(105) = 2520.
%e A371285 The terms together with their prime indices begin:
%e A371285           1: {}
%e A371285           2: {1}
%e A371285           6: {1,2}
%e A371285           4: {1,1}
%e A371285          10: {1,3}
%e A371285          12: {1,1,2}
%e A371285          42: {1,2,4}
%e A371285           8: {1,1,1}
%e A371285          36: {1,1,2,2}
%e A371285          20: {1,1,3}
%e A371285          22: {1,5}
%e A371285          24: {1,1,1,2}
%e A371285         390: {1,2,3,6}
%e A371285          84: {1,1,2,4}
%e A371285          60: {1,1,2,3}
%e A371285          16: {1,1,1,1}
%e A371285          34: {1,7}
%e A371285          72: {1,1,1,2,2}
%t A371285 prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n], {p_,k_}:>Table[PrimePi[p],{k}]]]];
%t A371285 Table[Times@@Prime/@Join@@Divisors/@prix[n],{n,100}]
%Y A371285 Product of A275700 applied to each prime index.
%Y A371285 The squarefree case is also A275700.
%Y A371285 The sorted version is A371286.
%Y A371285 A000005 counts divisors.
%Y A371285 A001221 counts distinct prime factors.
%Y A371285 A027746 lists prime factors, A112798 indices, length A001222.
%Y A371285 A355731 counts choices of a divisor of each prime index, firsts A355732.
%Y A371285 A355741 counts choices of a prime factor of each prime index.
%Y A371285 Cf. A000720, A003963, A005179, A007416, A034729, A054973, A056239, A321898, A370820, A371165, A371181, A371284, A371288.
%K A371285 nonn,mult
%O A371285 1,2
%A A371285 _Gus Wiseman_, Mar 21 2024