This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A371285 #9 Mar 22 2024 12:33:39 %S A371285 1,2,6,4,10,12,42,8,36,20,22,24,390,84,60,16,34,72,798,40,252,44,230, %T A371285 48,100,780,216,168,1914,120,62,32,132,68,420,144,101010,1596,2340,80, %U A371285 82,504,4386,88,360,460,5170,96,1764,200,204,1560,42294,432,220,336 %N A371285 Heinz number of the multiset union of the divisor sets of each prime index of n. %C A371285 The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions. %C A371285 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. %F A371285 If n = prime(x_1)*...*prime(x_k) then a(n) = A275700(x_1)*...*A275700(x_k). %e A371285 The prime indices of 105 are {2,3,4}, with divisor sets {{1,2},{1,3},{1,2,4}}, with multiset union {1,1,1,2,2,3,4}, with Heinz number 2520, so a(105) = 2520. %e A371285 The terms together with their prime indices begin: %e A371285 1: {} %e A371285 2: {1} %e A371285 6: {1,2} %e A371285 4: {1,1} %e A371285 10: {1,3} %e A371285 12: {1,1,2} %e A371285 42: {1,2,4} %e A371285 8: {1,1,1} %e A371285 36: {1,1,2,2} %e A371285 20: {1,1,3} %e A371285 22: {1,5} %e A371285 24: {1,1,1,2} %e A371285 390: {1,2,3,6} %e A371285 84: {1,1,2,4} %e A371285 60: {1,1,2,3} %e A371285 16: {1,1,1,1} %e A371285 34: {1,7} %e A371285 72: {1,1,1,2,2} %t A371285 prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n], {p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A371285 Table[Times@@Prime/@Join@@Divisors/@prix[n],{n,100}] %Y A371285 Product of A275700 applied to each prime index. %Y A371285 The squarefree case is also A275700. %Y A371285 The sorted version is A371286. %Y A371285 A000005 counts divisors. %Y A371285 A001221 counts distinct prime factors. %Y A371285 A027746 lists prime factors, A112798 indices, length A001222. %Y A371285 A355731 counts choices of a divisor of each prime index, firsts A355732. %Y A371285 A355741 counts choices of a prime factor of each prime index. %Y A371285 Cf. A000720, A003963, A005179, A007416, A034729, A054973, A056239, A321898, A370820, A371165, A371181, A371284, A371288. %K A371285 nonn,mult %O A371285 1,2 %A A371285 _Gus Wiseman_, Mar 21 2024