This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A371286 #7 Mar 22 2024 16:28:07 %S A371286 1,2,4,6,8,10,12,16,20,22,24,32,34,36,40,42,44,48,60,62,64,68,72,80, %T A371286 82,84,88,96,100,118,120,124,128,132,134,136,144,160,164,166,168,176, %U A371286 192,200,204,216,218,220,230,236,240,248,252,254,256,264,268,272,288 %N A371286 Products of elements of A275700 (Heinz numbers of divisor sets). Numbers with a (necessarily unique) factorization into elements of A275700. %C A371286 The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions. %C A371286 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. %e A371286 The terms together with their prime factorizations and unique factorizations into terms of A275700 begin: %e A371286 1 = = () %e A371286 2 = 2 = (2) %e A371286 4 = 2*2 = (2*2) %e A371286 6 = 2*3 = (6) %e A371286 8 = 2*2*2 = (2*2*2) %e A371286 10 = 2*5 = (10) %e A371286 12 = 2*2*3 = (2*6) %e A371286 16 = 2*2*2*2 = (2*2*2*2) %e A371286 20 = 2*2*5 = (2*10) %e A371286 22 = 2*11 = (22) %e A371286 24 = 2*2*2*3 = (2*2*6) %e A371286 32 = 2*2*2*2*2 = (2*2*2*2*2) %e A371286 34 = 2*17 = (34) %e A371286 36 = 2*2*3*3 = (6*6) %e A371286 40 = 2*2*2*5 = (2*2*10) %e A371286 42 = 2*3*7 = (42) %e A371286 44 = 2*2*11 = (2*22) %e A371286 48 = 2*2*2*2*3 = (2*2*2*6) %e A371286 60 = 2*2*3*5 = (6*10) %e A371286 62 = 2*31 = (62) %e A371286 64 = 2*2*2*2*2*2 = (2*2*2*2*2*2) %e A371286 68 = 2*2*17 = (2*34) %e A371286 72 = 2*2*2*3*3 = (2*6*6) %e A371286 80 = 2*2*2*2*5 = (2*2*2*10) %e A371286 82 = 2*41 = (82) %e A371286 84 = 2*2*3*7 = (2*42) %e A371286 88 = 2*2*2*11 = (2*2*22) %e A371286 96 = 2*2*2*2*2*3 = (2*2*2*2*6) %t A371286 nn=100; %t A371286 prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n], {p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A371286 facs[n_]:=If[n<=1, {{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]], {d,Rest[Divisors[n]]}]]; %t A371286 s=Table[Times@@Prime/@Divisors[n],{n,nn}]; %t A371286 m=Max@@Table[Select[Range[2,k],prix[#] == Divisors[Last[prix[#]]]&],{k,nn}]; %t A371286 Join@@Position[Table[Length[Select[facs[n], SubsetQ[s,Union[#]]&]],{n,m}],1] %Y A371286 Products of elements of A275700. %Y A371286 The squarefree case is A371283. %Y A371286 The unsorted version is A371285. %Y A371286 A000005 counts divisors. %Y A371286 A001221 counts distinct prime factors. %Y A371286 A027746 lists prime factors, A112798 indices, length A001222. %Y A371286 A355731 counts choices of a divisor of each prime index, firsts A355732. %Y A371286 A355741 counts choices of a prime factor of each prime index. %Y A371286 Cf. A000720, A003963, A005179, A007416, A034729, A054973, A056239, A370820, A371284, A371288. %K A371286 nonn %O A371286 1,2 %A A371286 _Gus Wiseman_, Mar 22 2024