cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A371287 Numbers whose product of prime indices has exactly two distinct prime factors.

This page as a plain text file.
%I A371287 #5 Mar 22 2024 08:59:51
%S A371287 13,15,26,29,30,33,35,37,39,43,45,47,51,52,55,58,60,61,65,66,69,70,71,
%T A371287 73,74,75,77,78,79,85,86,87,89,90,91,93,94,95,99,101,102,104,105,107,
%U A371287 110,111,116,117,119,120,122,123,129,130,132,135,137,138,139,140
%N A371287 Numbers whose product of prime indices has exactly two distinct prime factors.
%C A371287 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
%F A371287 A001221(A003963(a(n))) = A303975(a(n)) = 2.
%e A371287 The terms together with their prime indices begin:
%e A371287   13: {6}
%e A371287   15: {2,3}
%e A371287   26: {1,6}
%e A371287   29: {10}
%e A371287   30: {1,2,3}
%e A371287   33: {2,5}
%e A371287   35: {3,4}
%e A371287   37: {12}
%e A371287   39: {2,6}
%e A371287   43: {14}
%e A371287   45: {2,2,3}
%e A371287   47: {15}
%e A371287   51: {2,7}
%e A371287   52: {1,1,6}
%e A371287   55: {3,5}
%e A371287   58: {1,10}
%e A371287   60: {1,1,2,3}
%t A371287 Select[Range[100],2==PrimeNu[Times @@ PrimePi/@First/@If[#==1,{},FactorInteger[#]]]&]
%Y A371287 Positions of 2's in A303975 (positions of 1's are A320698).
%Y A371287 Counting divisors (not factors) gives A371127, positions of 2's in A370820.
%Y A371287 A000005 counts divisors.
%Y A371287 A000961 lists powers of primes, of prime index A302596.
%Y A371287 A001221 counts distinct prime factors.
%Y A371287 A001358 lists semiprimes, squarefree A006881.
%Y A371287 A003963 gives product of prime indices.
%Y A371287 A027746 lists prime factors, indices A112798, length A001222.
%Y A371287 A076610 lists products of primes of prime index.
%Y A371287 A355731 counts choices of a divisor of each prime index, firsts A355732.
%Y A371287 A355741 counts choices of a prime factor of each prime index.
%Y A371287 Cf. A000079, A007416, A056239, A302540, A319899, A336101, A355739, A370802.
%K A371287 nonn
%O A371287 1,1
%A A371287 _Gus Wiseman_, Mar 21 2024