This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A371287 #5 Mar 22 2024 08:59:51 %S A371287 13,15,26,29,30,33,35,37,39,43,45,47,51,52,55,58,60,61,65,66,69,70,71, %T A371287 73,74,75,77,78,79,85,86,87,89,90,91,93,94,95,99,101,102,104,105,107, %U A371287 110,111,116,117,119,120,122,123,129,130,132,135,137,138,139,140 %N A371287 Numbers whose product of prime indices has exactly two distinct prime factors. %C A371287 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. %F A371287 A001221(A003963(a(n))) = A303975(a(n)) = 2. %e A371287 The terms together with their prime indices begin: %e A371287 13: {6} %e A371287 15: {2,3} %e A371287 26: {1,6} %e A371287 29: {10} %e A371287 30: {1,2,3} %e A371287 33: {2,5} %e A371287 35: {3,4} %e A371287 37: {12} %e A371287 39: {2,6} %e A371287 43: {14} %e A371287 45: {2,2,3} %e A371287 47: {15} %e A371287 51: {2,7} %e A371287 52: {1,1,6} %e A371287 55: {3,5} %e A371287 58: {1,10} %e A371287 60: {1,1,2,3} %t A371287 Select[Range[100],2==PrimeNu[Times @@ PrimePi/@First/@If[#==1,{},FactorInteger[#]]]&] %Y A371287 Positions of 2's in A303975 (positions of 1's are A320698). %Y A371287 Counting divisors (not factors) gives A371127, positions of 2's in A370820. %Y A371287 A000005 counts divisors. %Y A371287 A000961 lists powers of primes, of prime index A302596. %Y A371287 A001221 counts distinct prime factors. %Y A371287 A001358 lists semiprimes, squarefree A006881. %Y A371287 A003963 gives product of prime indices. %Y A371287 A027746 lists prime factors, indices A112798, length A001222. %Y A371287 A076610 lists products of primes of prime index. %Y A371287 A355731 counts choices of a divisor of each prime index, firsts A355732. %Y A371287 A355741 counts choices of a prime factor of each prime index. %Y A371287 Cf. A000079, A007416, A056239, A302540, A319899, A336101, A355739, A370802. %K A371287 nonn %O A371287 1,1 %A A371287 _Gus Wiseman_, Mar 21 2024