This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A371288 #12 Aug 26 2024 09:55:39 %S A371288 2,4,6,8,10,12,16,18,20,22,24,32,34,36,40,42,44,48,50,54,62,64,68,72, %T A371288 80,82,84,88,96,100,108,118,124,126,128,134,136,144,160,162,164,166, %U A371288 168,176,192,200,216,218,230,236,242,248,250,252,254,256,268,272,288 %N A371288 Numbers whose distinct prime indices form the set of divisors of some positive integer. %C A371288 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. %H A371288 Joseph Likar, <a href="/A371288/b371288.txt">Table of n, a(n) for n = 1..10000</a> %e A371288 The prime indices of 694782 are {1,2,2,5,5,5,10} with distinct elements {1,2,5,10}, which form the set of divisors of 10, so 694782 is in the sequence. %e A371288 The terms together with their prime indices begin: %e A371288 2: {1} %e A371288 4: {1,1} %e A371288 6: {1,2} %e A371288 8: {1,1,1} %e A371288 10: {1,3} %e A371288 12: {1,1,2} %e A371288 16: {1,1,1,1} %e A371288 18: {1,2,2} %e A371288 20: {1,1,3} %e A371288 22: {1,5} %e A371288 24: {1,1,1,2} %e A371288 32: {1,1,1,1,1} %e A371288 34: {1,7} %e A371288 36: {1,1,2,2} %e A371288 40: {1,1,1,3} %e A371288 42: {1,2,4} %e A371288 44: {1,1,5} %e A371288 48: {1,1,1,1,2} %t A371288 prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A371288 Select[Range[100],Union[prix[#]]==Divisors[Max@@prix[#]]&] %Y A371288 The squarefree case is A371283, unsorted version A275700. %Y A371288 Partitions of this type are counted by A371284, strict A054973. %Y A371288 Products of squarefree terms are A371286, unsorted version A371285. %Y A371288 A000005 counts divisors. %Y A371288 A001221 counts distinct prime factors. %Y A371288 A027746 lists prime factors, indices A112798, length A001222. %Y A371288 Cf. A000720, A003963, A005179, A007416, A034729, A370820, A371131, A371177. %K A371288 nonn %O A371288 1,1 %A A371288 _Gus Wiseman_, Mar 22 2024