This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A371289 #11 Mar 28 2024 11:58:01 %S A371289 0,1,2,3,4,5,6,7,16,17,18,19,20,21,22,23,32,33,48,49,64,65,66,67,68, %T A371289 69,70,71,80,81,82,83,84,85,86,87,96,97,112,113,512,513,516,517,576, %U A371289 577,580,581,1024,1025,1026,1027,1028,1029,1030,1031,1040,1041,1042 %N A371289 Numbers whose binary indices have squarefree product. %C A371289 A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793. %e A371289 The terms together with their binary expansions and binary indices begin: %e A371289 0: 0 ~ {} %e A371289 1: 1 ~ {1} %e A371289 2: 10 ~ {2} %e A371289 3: 11 ~ {1,2} %e A371289 4: 100 ~ {3} %e A371289 5: 101 ~ {1,3} %e A371289 6: 110 ~ {2,3} %e A371289 7: 111 ~ {1,2,3} %e A371289 16: 10000 ~ {5} %e A371289 17: 10001 ~ {1,5} %e A371289 18: 10010 ~ {2,5} %e A371289 19: 10011 ~ {1,2,5} %e A371289 20: 10100 ~ {3,5} %e A371289 21: 10101 ~ {1,3,5} %e A371289 22: 10110 ~ {2,3,5} %e A371289 23: 10111 ~ {1,2,3,5} %e A371289 32: 100000 ~ {6} %e A371289 33: 100001 ~ {1,6} %e A371289 48: 110000 ~ {5,6} %e A371289 49: 110001 ~ {1,5,6} %e A371289 64: 1000000 ~ {7} %e A371289 65: 1000001 ~ {1,7} %e A371289 66: 1000010 ~ {2,7} %t A371289 bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1]; %t A371289 Select[Range[0,100],SquareFreeQ[Times@@bpe[#]]&] %Y A371289 For prime instead of binary indices we have A302505. %Y A371289 For squarefree parts we have A368533, for prime indices A302478. %Y A371289 A005117 lists squarefree numbers. %Y A371289 A048793 lists binary indices, A000120 length, A272020 reverse, A029931 sum. %Y A371289 A070939 gives length of binary expansion. %Y A371289 A096111 gives product of binary indices. %Y A371289 Cf. A325118, A326782, A371290, A371291, A371292, A371293, A371443, A371446, A371448, A371449, A371452, A371453. %K A371289 nonn,base %O A371289 1,3 %A A371289 _Gus Wiseman_, Mar 25 2024