This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A371290 #9 Mar 28 2024 11:58:06 %S A371290 1,2,3,4,5,8,9,10,11,16,17,64,65,128,129,130,131,136,137,138,139,256, %T A371290 257,260,261,1024,1025,4096,4097,32768,32769,32770,32771,32776,32777, %U A371290 32778,32779,32896,32897,32898,32899,32904,32905,32906,32907,65536,65537,262144 %N A371290 Numbers whose product of binary indices is a prime power > 1. %C A371290 A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793. %e A371290 The terms together with their binary expansions and binary indices begin: %e A371290 1: 1 ~ {1} %e A371290 2: 10 ~ {2} %e A371290 3: 11 ~ {1,2} %e A371290 4: 100 ~ {3} %e A371290 5: 101 ~ {1,3} %e A371290 8: 1000 ~ {4} %e A371290 9: 1001 ~ {1,4} %e A371290 10: 1010 ~ {2,4} %e A371290 11: 1011 ~ {1,2,4} %e A371290 16: 10000 ~ {5} %e A371290 17: 10001 ~ {1,5} %e A371290 64: 1000000 ~ {7} %e A371290 65: 1000001 ~ {1,7} %e A371290 128: 10000000 ~ {8} %e A371290 129: 10000001 ~ {1,8} %e A371290 130: 10000010 ~ {2,8} %e A371290 131: 10000011 ~ {1,2,8} %e A371290 136: 10001000 ~ {4,8} %e A371290 137: 10001001 ~ {1,4,8} %e A371290 138: 10001010 ~ {2,4,8} %e A371290 139: 10001011 ~ {1,2,4,8} %e A371290 256: 100000000 ~ {9} %e A371290 257: 100000001 ~ {1,9} %e A371290 260: 100000100 ~ {3,9} %e A371290 261: 100000101 ~ {1,3,9} %e A371290 1024: 10000000000 ~ {11} %e A371290 1025: 10000000001 ~ {1,11} %e A371290 4096: 1000000000000 ~ {13} %e A371290 4097: 1000000000001 ~ {1,13} %e A371290 32768: 1000000000000000 ~ {16} %t A371290 bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1]; %t A371290 Select[Range[1000],#==1||PrimePowerQ[Times@@bpe[#]]&] %Y A371290 For powers of 2 we have A253317. %Y A371290 For prime indices we have A320698. %Y A371290 For squarefree numbers instead of prime powers we have A371289. %Y A371290 A000040 lists prime numbers. %Y A371290 A000961 lists prime-powers. %Y A371290 A048793 lists binary indices, A000120 length, A272020 reverse, A029931 sum. %Y A371290 A070939 gives length of binary expansion. %Y A371290 A096111 gives product of binary indices. %Y A371290 Cf. A005117, A326782, A368533, A371292, A371443, A371452. %K A371290 nonn,base %O A371290 1,2 %A A371290 _Gus Wiseman_, Mar 27 2024