cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A371291 Numbers whose binary indices are connected, where two numbers are connected iff they have a common factor.

This page as a plain text file.
%I A371291 #9 Mar 28 2024 11:58:10
%S A371291 1,2,4,8,10,16,32,34,36,38,40,42,44,46,64,128,130,136,138,160,162,164,
%T A371291 166,168,170,172,174,256,260,288,290,292,294,296,298,300,302,416,418,
%U A371291 420,422,424,426,428,430,512,514,520,522,528,530,536,538,544,546,548
%N A371291 Numbers whose binary indices are connected, where two numbers are connected iff they have a common factor.
%C A371291 A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793.
%C A371291 The empty set is not considered connected.
%e A371291 The terms together with their binary expansions and binary indices begin:
%e A371291     1:          1 ~ {1}
%e A371291     2:         10 ~ {2}
%e A371291     4:        100 ~ {3}
%e A371291     8:       1000 ~ {4}
%e A371291    10:       1010 ~ {2,4}
%e A371291    16:      10000 ~ {5}
%e A371291    32:     100000 ~ {6}
%e A371291    34:     100010 ~ {2,6}
%e A371291    36:     100100 ~ {3,6}
%e A371291    38:     100110 ~ {2,3,6}
%e A371291    40:     101000 ~ {4,6}
%e A371291    42:     101010 ~ {2,4,6}
%e A371291    44:     101100 ~ {3,4,6}
%e A371291    46:     101110 ~ {2,3,4,6}
%e A371291    64:    1000000 ~ {7}
%e A371291   128:   10000000 ~ {8}
%e A371291   130:   10000010 ~ {2,8}
%e A371291   136:   10001000 ~ {4,8}
%e A371291   138:   10001010 ~ {2,4,8}
%e A371291   160:   10100000 ~ {6,8}
%e A371291   162:   10100010 ~ {2,6,8}
%e A371291   164:   10100100 ~ {3,6,8}
%t A371291 csm[s_]:=With[{c=Select[Subsets[Range[Length[s]],{2}],Length[Intersection@@s[[#]]]>0&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
%t A371291 prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
%t A371291 bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
%t A371291 Select[Range[0,1000],Length[csm[prix/@bpe[#]]]==1&]
%Y A371291 For prime indices of each prime index we have A305078.
%Y A371291 The opposite version is A325118.
%Y A371291 For binary indices of each binary index we have A326749.
%Y A371291 The pairwise indivisible case is A371294, opposite A371445.
%Y A371291 Positions of ones in A371452.
%Y A371291 A001187 counts connected graphs.
%Y A371291 A007718 counts non-isomorphic connected multiset partitions.
%Y A371291 A048143 counts connected antichains of sets.
%Y A371291 A048793 lists binary indices, A000120 length, A272020 reverse, A029931 sum.
%Y A371291 A070939 gives length of binary expansion.
%Y A371291 A087086 lists numbers whose binary indices are pairwise indivisible.
%Y A371291 A096111 gives product of binary indices.
%Y A371291 A326964 counts connected set-systems, covering A323818.
%Y A371291 Cf. A000040, A000720, A001222, A305079, A326753, A371446.
%K A371291 nonn,base
%O A371291 1,2
%A A371291 _Gus Wiseman_, Mar 27 2024