This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A371291 #9 Mar 28 2024 11:58:10 %S A371291 1,2,4,8,10,16,32,34,36,38,40,42,44,46,64,128,130,136,138,160,162,164, %T A371291 166,168,170,172,174,256,260,288,290,292,294,296,298,300,302,416,418, %U A371291 420,422,424,426,428,430,512,514,520,522,528,530,536,538,544,546,548 %N A371291 Numbers whose binary indices are connected, where two numbers are connected iff they have a common factor. %C A371291 A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793. %C A371291 The empty set is not considered connected. %e A371291 The terms together with their binary expansions and binary indices begin: %e A371291 1: 1 ~ {1} %e A371291 2: 10 ~ {2} %e A371291 4: 100 ~ {3} %e A371291 8: 1000 ~ {4} %e A371291 10: 1010 ~ {2,4} %e A371291 16: 10000 ~ {5} %e A371291 32: 100000 ~ {6} %e A371291 34: 100010 ~ {2,6} %e A371291 36: 100100 ~ {3,6} %e A371291 38: 100110 ~ {2,3,6} %e A371291 40: 101000 ~ {4,6} %e A371291 42: 101010 ~ {2,4,6} %e A371291 44: 101100 ~ {3,4,6} %e A371291 46: 101110 ~ {2,3,4,6} %e A371291 64: 1000000 ~ {7} %e A371291 128: 10000000 ~ {8} %e A371291 130: 10000010 ~ {2,8} %e A371291 136: 10001000 ~ {4,8} %e A371291 138: 10001010 ~ {2,4,8} %e A371291 160: 10100000 ~ {6,8} %e A371291 162: 10100010 ~ {2,6,8} %e A371291 164: 10100100 ~ {3,6,8} %t A371291 csm[s_]:=With[{c=Select[Subsets[Range[Length[s]],{2}],Length[Intersection@@s[[#]]]>0&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]]; %t A371291 prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A371291 bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1]; %t A371291 Select[Range[0,1000],Length[csm[prix/@bpe[#]]]==1&] %Y A371291 For prime indices of each prime index we have A305078. %Y A371291 The opposite version is A325118. %Y A371291 For binary indices of each binary index we have A326749. %Y A371291 The pairwise indivisible case is A371294, opposite A371445. %Y A371291 Positions of ones in A371452. %Y A371291 A001187 counts connected graphs. %Y A371291 A007718 counts non-isomorphic connected multiset partitions. %Y A371291 A048143 counts connected antichains of sets. %Y A371291 A048793 lists binary indices, A000120 length, A272020 reverse, A029931 sum. %Y A371291 A070939 gives length of binary expansion. %Y A371291 A087086 lists numbers whose binary indices are pairwise indivisible. %Y A371291 A096111 gives product of binary indices. %Y A371291 A326964 counts connected set-systems, covering A323818. %Y A371291 Cf. A000040, A000720, A001222, A305079, A326753, A371446. %K A371291 nonn,base %O A371291 1,2 %A A371291 _Gus Wiseman_, Mar 27 2024