This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A371292 #16 May 22 2024 02:14:12 %S A371292 0,1,2,3,6,7,8,9,10,11,12,13,14,15,22,23,28,29,30,31,32,33,34,35,36, %T A371292 37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59, %U A371292 60,61,62,63,86,87,92,93,94,95,112,113,114,115,116,117,118,119 %N A371292 Numbers whose binary indices have prime indices covering an initial interval of positive integers. %C A371292 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. %C A371292 A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793. %H A371292 John Tyler Rascoe, <a href="/A371292/b371292.txt">Table of n, a(n) for n = 0..10000</a> %e A371292 The terms together with their prime indices of binary indices begin: %e A371292 0: {} %e A371292 1: {{}} %e A371292 2: {{1}} %e A371292 3: {{},{1}} %e A371292 6: {{1},{2}} %e A371292 7: {{},{1},{2}} %e A371292 8: {{1,1}} %e A371292 9: {{},{1,1}} %e A371292 10: {{1},{1,1}} %e A371292 11: {{},{1},{1,1}} %e A371292 12: {{2},{1,1}} %e A371292 13: {{},{2},{1,1}} %e A371292 14: {{1},{2},{1,1}} %e A371292 15: {{},{1},{2},{1,1}} %e A371292 22: {{1},{2},{3}} %e A371292 23: {{},{1},{2},{3}} %e A371292 28: {{2},{1,1},{3}} %e A371292 29: {{},{2},{1,1},{3}} %e A371292 30: {{1},{2},{1,1},{3}} %e A371292 31: {{},{1},{2},{1,1},{3}} %e A371292 32: {{1,2}} %t A371292 normQ[m_]:=m=={}||Union[m]==Range[Max[m]]; %t A371292 prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n], {p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A371292 bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1]; %t A371292 Select[Range[0,100],normQ[Join@@prix/@bpe[#]]&] %o A371292 (Python) %o A371292 from itertools import count, islice %o A371292 from sympy import sieve, factorint %o A371292 def a_gen(): %o A371292 for n in count(0): %o A371292 s = set() %o A371292 b = [(i+1) for i, x in enumerate(bin(n)[2:][::-1]) if x =='1'] %o A371292 for i in b: %o A371292 p = factorint(i) %o A371292 for j in p: %o A371292 s.add(sieve.search(j)[0]) %o A371292 x = sorted(s) %o A371292 y = len(x) %o A371292 if sum(x) == (y*(y+1))//2: %o A371292 yield n %o A371292 A371292_list = list(islice(a_gen(), 65)) # _John Tyler Rascoe_, May 21 2024 %Y A371292 The case with squarefree product of prime indices is A371293. %Y A371292 For binary indices of each prime index we have A371447, A371448. %Y A371292 The connected components of this multiset system are counted by A371452. %Y A371292 A000009 counts partitions covering initial interval, compositions A107429. %Y A371292 A000670 counts patterns, ranked by A333217. %Y A371292 A011782 counts multisets covering an initial interval. %Y A371292 A048793 lists binary indices, A000120 length, A272020 reverse, A029931 sum. %Y A371292 A070939 gives length of binary expansion. %Y A371292 A131689 counts patterns by number of distinct parts. %Y A371292 Cf. A000040, A001222, A055887, A255906, A326782, A368109, A371291, A371294. %K A371292 nonn,base %O A371292 0,3 %A A371292 _Gus Wiseman_, Mar 27 2024