cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A371292 Numbers whose binary indices have prime indices covering an initial interval of positive integers.

This page as a plain text file.
%I A371292 #16 May 22 2024 02:14:12
%S A371292 0,1,2,3,6,7,8,9,10,11,12,13,14,15,22,23,28,29,30,31,32,33,34,35,36,
%T A371292 37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,
%U A371292 60,61,62,63,86,87,92,93,94,95,112,113,114,115,116,117,118,119
%N A371292 Numbers whose binary indices have prime indices covering an initial interval of positive integers.
%C A371292 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
%C A371292 A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793.
%H A371292 John Tyler Rascoe, <a href="/A371292/b371292.txt">Table of n, a(n) for n = 0..10000</a>
%e A371292 The terms together with their prime indices of binary indices begin:
%e A371292    0: {}
%e A371292    1: {{}}
%e A371292    2: {{1}}
%e A371292    3: {{},{1}}
%e A371292    6: {{1},{2}}
%e A371292    7: {{},{1},{2}}
%e A371292    8: {{1,1}}
%e A371292    9: {{},{1,1}}
%e A371292   10: {{1},{1,1}}
%e A371292   11: {{},{1},{1,1}}
%e A371292   12: {{2},{1,1}}
%e A371292   13: {{},{2},{1,1}}
%e A371292   14: {{1},{2},{1,1}}
%e A371292   15: {{},{1},{2},{1,1}}
%e A371292   22: {{1},{2},{3}}
%e A371292   23: {{},{1},{2},{3}}
%e A371292   28: {{2},{1,1},{3}}
%e A371292   29: {{},{2},{1,1},{3}}
%e A371292   30: {{1},{2},{1,1},{3}}
%e A371292   31: {{},{1},{2},{1,1},{3}}
%e A371292   32: {{1,2}}
%t A371292 normQ[m_]:=m=={}||Union[m]==Range[Max[m]];
%t A371292 prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n], {p_,k_}:>Table[PrimePi[p],{k}]]]];
%t A371292 bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
%t A371292 Select[Range[0,100],normQ[Join@@prix/@bpe[#]]&]
%o A371292 (Python)
%o A371292 from itertools import count, islice
%o A371292 from sympy import sieve, factorint
%o A371292 def a_gen():
%o A371292     for n in count(0):
%o A371292         s = set()
%o A371292         b = [(i+1) for i, x in enumerate(bin(n)[2:][::-1]) if x =='1']
%o A371292         for i in b:
%o A371292             p = factorint(i)
%o A371292             for j in p:
%o A371292                 s.add(sieve.search(j)[0])
%o A371292         x = sorted(s)
%o A371292         y = len(x)
%o A371292         if sum(x) == (y*(y+1))//2:
%o A371292             yield n
%o A371292 A371292_list = list(islice(a_gen(), 65)) # _John Tyler Rascoe_, May 21 2024
%Y A371292 The case with squarefree product of prime indices is A371293.
%Y A371292 For binary indices of each prime index we have A371447, A371448.
%Y A371292 The connected components of this multiset system are counted by A371452.
%Y A371292 A000009 counts partitions covering initial interval, compositions A107429.
%Y A371292 A000670 counts patterns, ranked by A333217.
%Y A371292 A011782 counts multisets covering an initial interval.
%Y A371292 A048793 lists binary indices, A000120 length, A272020 reverse, A029931 sum.
%Y A371292 A070939 gives length of binary expansion.
%Y A371292 A131689 counts patterns by number of distinct parts.
%Y A371292 Cf. A000040, A001222, A055887, A255906, A326782, A368109, A371291, A371294.
%K A371292 nonn,base
%O A371292 0,3
%A A371292 _Gus Wiseman_, Mar 27 2024