cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A371293 Numbers whose binary indices have (1) prime indices covering an initial interval and (2) squarefree product.

This page as a plain text file.
%I A371293 #5 Mar 30 2024 15:57:04
%S A371293 1,2,3,6,7,22,23,32,33,48,49,86,87,112,113,516,517,580,581,1110,1111,
%T A371293 1136,1137,1604,1605,5206,5207,5232,5233,5700,5701,8212,8213,9236,
%U A371293 9237,13332,13333,16386,16387,16450,16451,17474,17475,21570,21571,24576,24577
%N A371293 Numbers whose binary indices have (1) prime indices covering an initial interval and (2) squarefree product.
%C A371293 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
%C A371293 A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793.
%F A371293 Intersection of A371292 and A371289.
%e A371293 The terms together with their prime indices of binary indices begin:
%e A371293     1: {{}}
%e A371293     2: {{1}}
%e A371293     3: {{},{1}}
%e A371293     6: {{1},{2}}
%e A371293     7: {{},{1},{2}}
%e A371293    22: {{1},{2},{3}}
%e A371293    23: {{},{1},{2},{3}}
%e A371293    32: {{1,2}}
%e A371293    33: {{},{1,2}}
%e A371293    48: {{3},{1,2}}
%e A371293    49: {{},{3},{1,2}}
%e A371293    86: {{1},{2},{3},{4}}
%e A371293    87: {{},{1},{2},{3},{4}}
%e A371293   112: {{3},{1,2},{4}}
%e A371293   113: {{},{3},{1,2},{4}}
%e A371293   516: {{2},{1,3}}
%e A371293   517: {{},{2},{1,3}}
%e A371293   580: {{2},{4},{1,3}}
%e A371293   581: {{},{2},{4},{1,3}}
%t A371293 normQ[m_]:=m=={}||Union[m]==Range[Max[m]];
%t A371293 prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n], {p_,k_}:>Table[PrimePi[p],{k}]]]];
%t A371293 bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
%t A371293 Select[Range[1000],SquareFreeQ[Times @@ bpe[#]]&&normQ[Join@@prix/@bpe[#]]&]
%Y A371293 Without the covering condition we have A371289.
%Y A371293 Without squarefree product we have A371292.
%Y A371293 Interchanging binary and prime indices gives A371448.
%Y A371293 A000009 counts partitions covering initial interval, compositions A107429.
%Y A371293 A000670 counts ordered set partitions, allowing empty sets A000629.
%Y A371293 A005117 lists squarefree numbers.
%Y A371293 A011782 counts multisets covering an initial interval.
%Y A371293 A048793 lists binary indices, A000120 length, A272020 reverse, A029931 sum.
%Y A371293 A070939 gives length of binary expansion.
%Y A371293 A096111 gives product of binary indices.
%Y A371293 A131689 counts patterns by number of distinct parts.
%Y A371293 A302521 lists MM-numbers of set partitions, with empties A302505.
%Y A371293 A326701 lists BII-numbers of set partitions.
%Y A371293 A368533 lists numbers with squarefree binary indices, prime indices A302478.
%Y A371293 Cf. A000040, A001222, A255906, A326782, A371291, A371294, A371447, A371452.
%K A371293 nonn
%O A371293 1,2
%A A371293 _Gus Wiseman_, Mar 28 2024