This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A371293 #5 Mar 30 2024 15:57:04 %S A371293 1,2,3,6,7,22,23,32,33,48,49,86,87,112,113,516,517,580,581,1110,1111, %T A371293 1136,1137,1604,1605,5206,5207,5232,5233,5700,5701,8212,8213,9236, %U A371293 9237,13332,13333,16386,16387,16450,16451,17474,17475,21570,21571,24576,24577 %N A371293 Numbers whose binary indices have (1) prime indices covering an initial interval and (2) squarefree product. %C A371293 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. %C A371293 A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793. %F A371293 Intersection of A371292 and A371289. %e A371293 The terms together with their prime indices of binary indices begin: %e A371293 1: {{}} %e A371293 2: {{1}} %e A371293 3: {{},{1}} %e A371293 6: {{1},{2}} %e A371293 7: {{},{1},{2}} %e A371293 22: {{1},{2},{3}} %e A371293 23: {{},{1},{2},{3}} %e A371293 32: {{1,2}} %e A371293 33: {{},{1,2}} %e A371293 48: {{3},{1,2}} %e A371293 49: {{},{3},{1,2}} %e A371293 86: {{1},{2},{3},{4}} %e A371293 87: {{},{1},{2},{3},{4}} %e A371293 112: {{3},{1,2},{4}} %e A371293 113: {{},{3},{1,2},{4}} %e A371293 516: {{2},{1,3}} %e A371293 517: {{},{2},{1,3}} %e A371293 580: {{2},{4},{1,3}} %e A371293 581: {{},{2},{4},{1,3}} %t A371293 normQ[m_]:=m=={}||Union[m]==Range[Max[m]]; %t A371293 prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n], {p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A371293 bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1]; %t A371293 Select[Range[1000],SquareFreeQ[Times @@ bpe[#]]&&normQ[Join@@prix/@bpe[#]]&] %Y A371293 Without the covering condition we have A371289. %Y A371293 Without squarefree product we have A371292. %Y A371293 Interchanging binary and prime indices gives A371448. %Y A371293 A000009 counts partitions covering initial interval, compositions A107429. %Y A371293 A000670 counts ordered set partitions, allowing empty sets A000629. %Y A371293 A005117 lists squarefree numbers. %Y A371293 A011782 counts multisets covering an initial interval. %Y A371293 A048793 lists binary indices, A000120 length, A272020 reverse, A029931 sum. %Y A371293 A070939 gives length of binary expansion. %Y A371293 A096111 gives product of binary indices. %Y A371293 A131689 counts patterns by number of distinct parts. %Y A371293 A302521 lists MM-numbers of set partitions, with empties A302505. %Y A371293 A326701 lists BII-numbers of set partitions. %Y A371293 A368533 lists numbers with squarefree binary indices, prime indices A302478. %Y A371293 Cf. A000040, A001222, A255906, A326782, A371291, A371294, A371447, A371452. %K A371293 nonn %O A371293 1,2 %A A371293 _Gus Wiseman_, Mar 28 2024