This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A371294 #5 Mar 30 2024 15:59:49 %S A371294 1,2,4,8,16,32,40,64,128,160,256,288,296,416,512,520,544,552,640,672, %T A371294 800,808,928,1024,2048,2176,2304,2432,2560,2688,2816,2944,4096,8192, %U A371294 8200,8224,8232,8320,8352,8480,8488,8608,8704,8712,8736,8744,8832,8864,8992 %N A371294 Numbers whose binary indices are connected and pairwise indivisible, where two numbers are connected iff they have a common factor. A hybrid ranking sequence for connected antichains of multisets. %C A371294 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. %C A371294 A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793. %F A371294 Intersection of A087086 and A371291. %e A371294 The terms together with their prime indices of binary indices begin: %e A371294 1: {{}} %e A371294 2: {{1}} %e A371294 4: {{2}} %e A371294 8: {{1,1}} %e A371294 16: {{3}} %e A371294 32: {{1,2}} %e A371294 40: {{1,1},{1,2}} %e A371294 64: {{4}} %e A371294 128: {{1,1,1}} %e A371294 160: {{1,2},{1,1,1}} %e A371294 256: {{2,2}} %e A371294 288: {{1,2},{2,2}} %e A371294 296: {{1,1},{1,2},{2,2}} %e A371294 416: {{1,2},{1,1,1},{2,2}} %e A371294 512: {{1,3}} %e A371294 520: {{1,1},{1,3}} %e A371294 544: {{1,2},{1,3}} %e A371294 552: {{1,1},{1,2},{1,3}} %e A371294 640: {{1,1,1},{1,3}} %e A371294 672: {{1,2},{1,1,1},{1,3}} %e A371294 800: {{1,2},{2,2},{1,3}} %e A371294 808: {{1,1},{1,2},{2,2},{1,3}} %e A371294 928: {{1,2},{1,1,1},{2,2},{1,3}} %t A371294 stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}]; %t A371294 bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1]; %t A371294 prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A371294 Select[Range[1000],stableQ[bpe[#],Divisible]&&connectedQ[prix/@bpe[#]]&] %Y A371294 Connected case of A087086, relatively prime A328671. %Y A371294 For binary indices of binary indices we have A326750, non-primitive A326749. %Y A371294 For prime indices of prime indices we have A329559, non-primitive A305078. %Y A371294 Primitive case of A371291 = positions of ones in A371452. %Y A371294 For binary indices of prime indices we have A371445, non-primitive A325118. %Y A371294 A001187 counts connected graphs. %Y A371294 A007718 counts non-isomorphic connected multiset partitions. %Y A371294 A048143 counts connected antichains of sets. %Y A371294 A048793 lists binary indices, A000120 length, A272020 reverse, A029931 sum. %Y A371294 A070939 gives length of binary expansion. %Y A371294 A096111 gives product of binary indices. %Y A371294 A326964 counts connected set-systems, covering A323818. %Y A371294 Cf. A001222, A051026, A285572, A303362, A304713, A305079, A316476, A319496, A319719, A326704, A371446. %K A371294 nonn %O A371294 1,2 %A A371294 _Gus Wiseman_, Mar 28 2024