cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A371294 Numbers whose binary indices are connected and pairwise indivisible, where two numbers are connected iff they have a common factor. A hybrid ranking sequence for connected antichains of multisets.

This page as a plain text file.
%I A371294 #5 Mar 30 2024 15:59:49
%S A371294 1,2,4,8,16,32,40,64,128,160,256,288,296,416,512,520,544,552,640,672,
%T A371294 800,808,928,1024,2048,2176,2304,2432,2560,2688,2816,2944,4096,8192,
%U A371294 8200,8224,8232,8320,8352,8480,8488,8608,8704,8712,8736,8744,8832,8864,8992
%N A371294 Numbers whose binary indices are connected and pairwise indivisible, where two numbers are connected iff they have a common factor. A hybrid ranking sequence for connected antichains of multisets.
%C A371294 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
%C A371294 A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793.
%F A371294 Intersection of A087086 and A371291.
%e A371294 The terms together with their prime indices of binary indices begin:
%e A371294     1: {{}}
%e A371294     2: {{1}}
%e A371294     4: {{2}}
%e A371294     8: {{1,1}}
%e A371294    16: {{3}}
%e A371294    32: {{1,2}}
%e A371294    40: {{1,1},{1,2}}
%e A371294    64: {{4}}
%e A371294   128: {{1,1,1}}
%e A371294   160: {{1,2},{1,1,1}}
%e A371294   256: {{2,2}}
%e A371294   288: {{1,2},{2,2}}
%e A371294   296: {{1,1},{1,2},{2,2}}
%e A371294   416: {{1,2},{1,1,1},{2,2}}
%e A371294   512: {{1,3}}
%e A371294   520: {{1,1},{1,3}}
%e A371294   544: {{1,2},{1,3}}
%e A371294   552: {{1,1},{1,2},{1,3}}
%e A371294   640: {{1,1,1},{1,3}}
%e A371294   672: {{1,2},{1,1,1},{1,3}}
%e A371294   800: {{1,2},{2,2},{1,3}}
%e A371294   808: {{1,1},{1,2},{2,2},{1,3}}
%e A371294   928: {{1,2},{1,1,1},{2,2},{1,3}}
%t A371294 stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
%t A371294 bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
%t A371294 prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
%t A371294 Select[Range[1000],stableQ[bpe[#],Divisible]&&connectedQ[prix/@bpe[#]]&]
%Y A371294 Connected case of A087086, relatively prime A328671.
%Y A371294 For binary indices of binary indices we have A326750, non-primitive A326749.
%Y A371294 For prime indices of prime indices we have A329559, non-primitive A305078.
%Y A371294 Primitive case of A371291 = positions of ones in A371452.
%Y A371294 For binary indices of prime indices we have A371445, non-primitive A325118.
%Y A371294 A001187 counts connected graphs.
%Y A371294 A007718 counts non-isomorphic connected multiset partitions.
%Y A371294 A048143 counts connected antichains of sets.
%Y A371294 A048793 lists binary indices, A000120 length, A272020 reverse, A029931 sum.
%Y A371294 A070939 gives length of binary expansion.
%Y A371294 A096111 gives product of binary indices.
%Y A371294 A326964 counts connected set-systems, covering A323818.
%Y A371294 Cf. A001222, A051026, A285572, A303362, A304713, A305079, A316476, A319496, A319719, A326704, A371446.
%K A371294 nonn
%O A371294 1,2
%A A371294 _Gus Wiseman_, Mar 28 2024