This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A371300 #16 Apr 22 2024 13:42:32 %S A371300 1,1,2,1,5,4,1,10,16,8,1,18,45,44,16,1,31,107,158,112,32,1,52,232,461, %T A371300 488,272,64,1,86,474,1190,1680,1392,640,128,1,141,930,2831,5009,5512, %U A371300 3760,1472,256,1,230,1772,6355,13541,18602,16816,9760,3328,512 %N A371300 Triangle read by rows: Riordan array (1/(1 - x), (1 + x)/(1 - x - x^2)). %F A371300 T(n, k) = 2*T(n-1, k-1) + T(n-1, k) + T(n-2, k-1) + T(n-2, k), T(n, k) = 0 if k > n or if k < 0, T(n, 0) = 1. - _Philippe Deléham_ , Apr 22 2024 %e A371300 Triangle begins: %e A371300 [0] 1; %e A371300 [1] 1, 2; %e A371300 [2] 1, 5, 4; %e A371300 [3] 1, 10, 16, 8; %e A371300 [4] 1, 18, 45, 44, 16; %e A371300 [5] 1, 31, 107, 158, 112, 32; %e A371300 [6] 1, 52, 232, 461, 488, 272, 64; %e A371300 [7] 1, 86, 474, 1190, 1680, 1392, 640, 128; %p A371300 T := proc(n, k) option remember; if k > n or k < 0 then 0 elif k = 0 then 1 else %p A371300 2*T(n-1, k-1) + T(n-1, k) + T(n-2, k-1) + T(n-2, k) fi end: %p A371300 for n from 0 to 9 do seq(T(n, k), k = 0..n) od; # _Peter Luschny_, Apr 22 2024 %o A371300 (SageMath) # using function riordan_array from A256893 %o A371300 riordan_array(1/(1 - x), (1 + x)/(1 - x - x^2), 8) %Y A371300 Cf. A371301 (row sums), A370174, A256893. %K A371300 nonn,tabl,easy %O A371300 0,3 %A A371300 _Peter Luschny_, Mar 18 2024