This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A371352 #17 Apr 23 2024 08:10:54 %S A371352 167,211,541,617,761,853,1021,1201,1423,1559,1607,1973,2011,2143,2341, %T A371352 2383,2833,3467,3719,3823,3917,4051,4231,4637,4673,5261,5443,5519, %U A371352 5591,6473,6521,6701,7193,7643,7687,7867,8053,8233,8677,9137,9173,9371,9551 %N A371352 Prime numbers such that the sum of their prime digits is equal to the sum of their nonprime digits. %H A371352 Michael S. Branicky, <a href="/A371352/b371352.txt">Table of n, a(n) for n = 1..10000</a> %e A371352 9173 is a term because it is a prime number whose prime digits and nonprime digits have the same sum: 3 + 7 = 1 + 9 = 10. %t A371352 Select[Prime[Range[1200]], Plus @@ Select[d = IntegerDigits[#], PrimeQ[#1] &] == Plus @@ Select[d, ! PrimeQ[#1] &] &] (* _Amiram Eldar_, Mar 22 2024 *) %o A371352 (Python) %o A371352 from sympy import isprime %o A371352 def ok(n): %o A371352 if not isprime(n): return False %o A371352 s, sums = str(n), [0, 0] %o A371352 for c in s: sums[int(c in "2357")] += int(c) %o A371352 return sums[0] == sums[1] %o A371352 print([k for k in range(10**4) if ok(k)]) # _Michael S. Branicky_, Apr 23 2024 %Y A371352 Cf. A000040, A156343 (equal number of prime and nonprime digits). %K A371352 nonn,base %O A371352 1,1 %A A371352 _Gonzalo MartÃnez_, Mar 19 2024