cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A371374 Place n equally spaced points around the circumference of a circle and then, for each pair of points, draw two distinct circles, whose radii are the same as the first circle, such that both points lie on their circumferences. The sequence gives the total number of regions formed.

Original entry on oeis.org

1, 1, 9, 9, 51, 48, 211, 217, 612, 651, 1475, 1248, 3017, 3193, 5415, 5793, 9623, 9000, 15429, 15901, 23352, 24311, 34501, 33840, 49001, 50337, 67365, 69385, 91003, 87720, 120219, 123169, 155430, 159291, 198521, 198792, 250121, 256121, 310635, 317441, 382203, 382032, 465691, 473573
Offset: 1

Views

Author

Scott R. Shannon, Mar 20 2024

Keywords

Comments

See A371373 and A371254 for further information. The details of the number of regions with k sides is given in A371376.

Crossrefs

Cf. A371373 (vertices), A371375 (edges), A371376 (k-gons), A371377 (vertex crossings), A371254, A371253, A006533, A358782, A359046.

Formula

a(n) = A371375(n) - A371373(n) + 1 by Euler's formula.

A371254 Number of vertices formed when n equally spaced points are placed around a circle and all pairs of points are joined by an interior arc whose radius equals the circle's radius.

Original entry on oeis.org

1, 2, 4, 4, 15, 7, 70, 64, 208, 220, 550, 397, 1131, 1162, 1981, 2128, 3723, 3259, 5966, 6000, 9010, 9240, 13524, 12745, 19325, 19266, 26434, 26684, 35931, 33301, 47368, 47616, 61216, 61676, 78330, 76789, 98901, 99674, 122656, 123560
Offset: 1

Views

Author

Scott R. Shannon, Mar 16 2024

Keywords

Comments

Other than for n = 3, 4, and 6, all graphs so far investigated in this sequence contain some internal vertices which are created from the intersections of both 2 and 3 arcs, i.e., no graph contains only simple intersections. This is in contrast to the case where the point pairs are connected by straight lines, see A007569 and A335102, where the odd-n graphs contain only simple intersections. See the attached images.
Other patterns for the intersection arc counts are also seen. If n is divisible by 3 then a central vertex is always present that is created from the crossing of n arcs. If n is divisible by 6, then internal vertices are present that are created from the crossing of 6 arcs. For n = 15 and n = 45, internal vertices are present that are created from the crossing of 5 arcs - it is likely all graphs with n = 15+30*k, k>=0, contain such vertices.
For n = 30, the graph also contains internal vertices that are created from the crossing of 9 arcs. It is likely that all graphs with n divisible by 30 contain such vertices. As the graphs created from the straight line diagonal intersections of the regular n-gon, see A007569, also have the maximum possible line intersection count of 7 when n is divisible by 30, it is plausible that 9 is the maximum possible arc intersection count for any internal vertex, other than the central vertex when n is divisible by 3.
Assuming these patterns hold for all n, is it possible that there is a general formula for the number of vertices, analogous to that in A007569 for the intersections of chords in a regular n-gon?

Crossrefs

Cf. A371253 (regions), A371255 (edges), A371274 (k-gons), A371264 (vertex crossings), A370980 (number of circles), A371373 (complete circles), A007569, A335102, A358746, A331702, A359252.

Formula

a(n) = A371255(n) - A371253(n) + 1 by Euler's formula.

A371375 Place n equally spaced points around the circumference of a circle and then, for each pair of points, draw two distinct circles, whose radii are the same as the first circle, such that both points lie on their circumferences. The sequence gives the total number of (curved) edges formed.

Original entry on oeis.org

1, 2, 12, 12, 75, 66, 350, 360, 1071, 1150, 2684, 2148, 5603, 5950, 10110, 10928, 18309, 16830, 29564, 30500, 44961, 46882, 66746, 64872, 95125, 97786, 131112, 135156, 177567, 169770, 235042, 240928, 304359, 312086, 389340, 388764, 491175, 503158, 610662, 624280, 752145, 749742, 917276
Offset: 1

Views

Author

Scott R. Shannon, Mar 20 2024

Keywords

Comments

See A371373 and A371374 for images of the graphs.

Crossrefs

Cf. A371373 (vertices), A371374 (regions), A371376 (k-gons), A371377 (vertex crossings), A371255, A135565, A358783, A359047.

Formula

a(n) = A371373(n) + A371374(n) - 1 by Euler's formula.

A372614 Number of vertices among all distinct circles that can be constructed from the 3 vertices and the equally spaced 3*n points placed on the sides of an equilateral triangle, using only a compass.

Original entry on oeis.org

6, 87, 481, 1992, 6969, 15409, 35202, 58422, 107677, 159138, 268572, 350860, 557049
Offset: 0

Views

Author

Scott R. Shannon, May 07 2024

Keywords

Comments

A circle is constructed for every pair of the 3 + 3*n points, the first point defines the circle's center while the second the radius distance.

Crossrefs

Cf. A372615 (regions), A372616 (edges), A372617 (k-gons), A372682 (number of circles), A372731, A371373, A354605, A360351.

Formula

a(n) = A372616(n) - A372615(n) + 1 by Euler's formula.

A372731 Number of vertices among all distinct circles that can be constructed from the 3 vertices and the equally spaced 3*n points placed on the sides of an equilateral triangle when every pair of the 3 + 3*n points are connected by a circle and where the points lie at the ends of the circle's diameter.

Original entry on oeis.org

6, 51, 301, 1272, 3285, 8401, 16050, 30036, 49801, 80916, 120447, 180307, 249108, 350145, 465898, 618213
Offset: 0

Views

Author

Scott R. Shannon, May 12 2024

Keywords

Comments

A circle is constructed for every pair of the 3 + 3*n points, the two points lying at the ends of a diameter of the circle.

Crossrefs

Cf. A372732 (regions), A372733 (edges), A372734 (k-gons), A372735 (number of circles), A372614, A371373, A354605, A360351.

Formula

a(n) = A372733(n) - A372732(n) + 1 by Euler's formula.

A370980 If n is even, (n^2-2*n+2)/2, otherwise (n^2-n+2)/2.

Original entry on oeis.org

1, 1, 1, 4, 5, 11, 13, 22, 25, 37, 41, 56, 61, 79, 85, 106, 113, 137, 145, 172, 181, 211, 221, 254, 265, 301, 313, 352, 365, 407, 421, 466, 481, 529, 545, 596, 613, 667, 685, 742, 761, 821, 841, 904, 925, 991, 1013, 1082, 1105, 1177, 1201, 1276, 1301, 1379, 1405, 1486, 1513, 1597, 1625, 1712, 1741, 1831, 1861, 1954
Offset: 0

Views

Author

Keywords

Comments

Total number of circles in A371373 and A371253, if in the later all the circular arcs are completed to form full circles.
The sequence also gives the number of vertices created from circle intersections when a circle of radius r is drawn around each of n equally spaced points on the circumference of a circle of radius r. The number of regions in these constructions is A093005(n) and the number of edges is A183207(n). See the attached images. - Scott R. Shannon, Jul 06 2024.

Examples

			a(n) = 1+n*floor((n-1)/2) = 1+n*A004526(n-1). - _Chai Wah Wu_, Mar 23 2024
		

Crossrefs

Programs

Formula

a(n) = A183207(n) - A093005(n) + 1, by Euler's formula. - Scott R. Shannon, Jul 07 2024

A371376 Irregular table read by rows: place n equally spaced points around the circumference of a circle and then, for each pair of points, draw two distinct circles, whose radii are the same as the first circle, such that both points lie on their circumferences. T(n,k), k>=2, gives the number of k-sided regions formed.

Original entry on oeis.org

1, 6, 3, 8, 0, 1, 15, 30, 5, 1, 18, 30, 14, 147, 35, 7, 7, 1, 8, 152, 48, 8, 0, 0, 1, 27, 351, 171, 36, 27, 10, 390, 200, 10, 40, 0, 0, 0, 1, 22, 693, 649, 33, 77, 0, 0, 0, 0, 1, 12, 780, 408, 0, 48, 26, 1404, 1183, 234, 169, 0, 0, 0, 0, 0, 0, 1, 14, 1498, 1274, 224, 154, 14, 14, 0, 0, 0, 0, 0, 1
Offset: 2

Views

Author

Scott R. Shannon, Mar 20 2024

Keywords

Comments

See A371373 and A371374 for images of the graphs.

Examples

			The table begins:
1;
6, 3;
8, 0, 1;
15, 30, 5, 1;
18, 30;
14, 147, 35, 7, 7, 1;
8, 152, 48, 8, 0, 0, 1;
27, 351, 171, 36, 27;
10, 390, 200, 10, 40, 0, 0, 0, 1;
22, 693, 649, 33, 77, 0, 0, 0, 0, 1;
12, 780, 408, 0, 48;
26, 1404, 1183, 234, 169, 0, 0, 0, 0, 0, 0, 1;
14, 1498, 1274, 224, 154, 14, 14, 0, 0, 0, 0, 0, 1;
45, 2310, 2400, 390, 255, 15;
16, 2736, 2032, 656, 320, 0, 32, 0, 0, 0, 0, 0, 0, 0, 1;
34, 3978, 4097, 969, 493, 17, 34, 0, 0, 0, 0, 0, 0, 0, 0, 1;
18, 4410, 3078, 972, 468, 36, 18;
76, 6365, 6365, 1596, 855, 95, 76, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1;
20, 6840, 6000, 2100, 780, 60, 100, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1;
63, 8946, 10395, 2751, 924, 126, 147;
22, 10076, 9218, 3674, 1166, 22, 132, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1;
46, 13156, 14996, 4347, 1702, 92, 138, 23, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
                                                                     \\ 0, 0, 1;
24, 14232, 13296, 4512, 1440, 96, 240;
100, 19075, 19850, 6975, 2675, 150, 175, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
                                                                  \\ 0, 0, 0, 1;
.
.
		

Crossrefs

Cf. A371373 (vertices), A371374 (regions), A371375 (edges), A371377 (vertex crossings), A371274, A331450, A359009, A359061.

Formula

Sum of row(n) = A371374(n).

A372977 Number of vertices among all distinct circles that can be constructed from the 4 vertices and the equally spaced 4*n points placed on the sides of a square, using only a compass.

Original entry on oeis.org

40, 553, 4204, 14505, 39004, 94365, 197464, 320925, 569600
Offset: 0

Views

Author

Scott R. Shannon, May 19 2024

Keywords

Comments

A circle is constructed for every pair of the 4 + 4*n points, the first point defines the circle's center while the second the radius distance.

Crossrefs

Cf. A372978 (regions), A372979 (edges), A372980 (k-gons), A372981 (circles), A372614, A372731, A371373, A354605, A360351.

Formula

a(n) = A372979(n) - A372978(n) + 1 by Euler's formula.

A374338 Start with two vertices and draw a circle around each whose radius is the distance between the vertices. The sequence gives the number of vertices constructed after n iterations of drawing circles with this same radius around every new vertex created from all circles' intersections. See the Comments.

Original entry on oeis.org

4, 8, 14, 24, 34, 46, 62, 78, 96, 118, 140, 164, 192, 220, 250, 284, 318, 354, 394, 434, 476, 522, 568, 616, 668, 720, 774, 832, 890, 950, 1014, 1078, 1144, 1214, 1284, 1356, 1432, 1508, 1586, 1668, 1750, 1834, 1922, 2010, 2100, 2194, 2288, 2384, 2484, 2584, 2686, 2792
Offset: 1

Views

Author

Scott R. Shannon, Jul 05 2024

Keywords

Comments

Start with two vertices and, using each as the center, draw a circle around each whose radius is the distance between the vertices. These circles' intersections create two additional vertices, so after the first iteration four vertices exist. Using these four vertices as centers draw four new circles whose radius is the same as the distance between the initial two vertices. These circles' intersections create eight new vertices. Repeat this process n times; the sequence gives the number of vertices after n iterations.

Crossrefs

Cf. A374337 (regions), A374339 (edges), A359569, A371373, A371254.

Formula

a(n) = A374339(n) - A374337(n) + 1, by Euler's formula.
Conjectured:
If n = 3*k + 1, k >= 0, a(n) = (3*n^2 + 5*n + 4)/3.
If n = 3*k, k >= 1, a(n) = (3*n^2 + 5*n)/3.
If n = 3*k - 1, k >= 1, a(n) = (3*n^2 + 5*n + 2)/3.

A371377 Irregular table read by rows: place n equally spaced points around the circumference of a circle and then, for each pair of points, draw two distinct circles, whose radii are the same as the first circle, such that both points lie on their circumferences. T(n,k), k>=2, gives the number of vertices formed by the crossing of k arcs.

Original entry on oeis.org

0, 0, 0, 4, 0, 4, 10, 10, 0, 5, 6, 6, 0, 6, 1, 98, 35, 0, 0, 0, 7, 104, 32, 0, 0, 0, 8, 369, 81, 0, 0, 0, 0, 0, 10, 410, 80, 0, 0, 0, 0, 0, 10, 1034, 165, 0, 0, 0, 0, 0, 0, 0, 11, 768, 84, 0, 0, 36, 0, 0, 0, 0, 12, 1, 2288, 286, 0, 0, 0, 0, 0, 0, 0, 0, 0, 13, 2464, 280, 0, 0, 0, 0, 0, 0, 0, 0, 0, 14
Offset: 1

Views

Author

Scott R. Shannon, Mar 20 2024

Keywords

Comments

See A371373 and A371374 for images of the graphs.

Examples

			The table begins:
0;
0;
0, 4;
0, 4;
10, 10, 0, 5;
6, 6, 0, 6, 1;
98, 35, 0, 0, 0, 7;
104, 32, 0, 0, 0, 8;
369, 81, 0, 0, 0, 0, 0, 10;
410, 80, 0, 0, 0, 0, 0, 10;
1034, 165, 0, 0, 0, 0, 0, 0, 0, 11;
768, 84, 0, 0, 36, 0, 0, 0, 0, 12, 1;
2288, 286, 0, 0, 0, 0, 0, 0, 0, 0, 0, 13;
2464, 280, 0, 0, 0, 0, 0, 0, 0, 0, 0, 14;
4230, 420, 0, 30, 0, 0, 0, 0, 0, 0, 0, 0, 0, 16;
4672, 448, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 16;
7990, 680, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 17;
7254, 450, 0, 0, 108, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 18, 1;
13148, 969, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 19;
13620, 960, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 20;
20265, 1323, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 22;
21230, 1320, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 22;
30452, 1771, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 23;
29376, 1416, 0, 0, 216, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 24, 1;
43800, 2300, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 25;
45136, 2288, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 26;
.
.
		

Crossrefs

Cf. A371373 (vertices), A371374 (regions), A371375 (edges), A371376 (k-gons), A371264, A335102, A007569, A358746, A331702.

Formula

Sum of row(n) = A371373(n).
Showing 1-10 of 10 results.