cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A371378 Prime numbers wherein digit values decrease, increase, and finally decrease.

This page as a plain text file.
%I A371378 #26 Mar 22 2024 20:26:37
%S A371378 1021,1031,1051,1061,1063,1087,1091,1093,1097,2053,2063,2081,2083,
%T A371378 2087,2131,2141,2143,2153,2161,3041,3061,3083,3121,3163,3181,3187,
%U A371378 3191,3251,3253,3271,4021,4051,4073,4091,4093,4153,4231,4241,4243,4253,4261,4271,4273,4283
%N A371378 Prime numbers wherein digit values decrease, increase, and finally decrease.
%C A371378 Terms must have at least 4 digits. The sequence is finite.
%C A371378 There are 3136837 terms, with the last being 98765432101234567987654321. - _Michael S. Branicky_, Mar 20 2024
%H A371378 Alois P. Heinz, <a href="/A371378/b371378.txt">Table of n, a(n) for n = 1..10000</a>
%H A371378 Michael S. Branicky, <a href="/A371378/a371378_1.txt">Alternative Python program for full sequence A371378</a>
%H A371378 James S. DeArmon, <a href="/A371378/a371378.txt">LISP Code for A371378</a>
%p A371378 q:= proc(n) local i, l, s;
%p A371378       l, s:= convert(n, base, 10), 1;
%p A371378       for i to nops(l)-1 while s<5 do s:=
%p A371378        `if`(l[i]=l[i+1], 5,
%p A371378        `if`(l[i]<l[i+1], [2$2, 4$2][s], [5, 3$2, 5][s]))
%p A371378       od; is(s=4)
%p A371378     end:
%p A371378 select(isprime and q, [$1..15000])[];  # _Alois P. Heinz_, Mar 21 2024
%t A371378 Select[Prime[Range[600]], SplitBy[Sign[Differences[IntegerDigits[#]]], Sign][[;; , 1]] == {-1, 1, -1} &] (* _Amiram Eldar_, Mar 21 2024 *)
%o A371378 (Python)
%o A371378 from sympy import isprime
%o A371378 from itertools import combinations, islice
%o A371378 def agen(): # generator of terms
%o A371378     for d in range(4, 29):
%o A371378         print(d)
%o A371378         passed = set()
%o A371378         for d1 in range(2, min(d-2, 11)+1):
%o A371378             for c1 in combinations("9876543210", d1):
%o A371378                 for d2 in range(1, min(d-d1-1, 10)+1):
%o A371378                     digits2 = list(map(str, range(int(c1[-1])+1, 10)))
%o A371378                     for c2 in combinations(digits2, d2):
%o A371378                         digits3 = list(map(str, range(int(c2[-1])-1, -1, -1)))
%o A371378                         for c3 in combinations(digits3, d - d1 - d2):
%o A371378                             t = int("".join(c1 + c2 + c3))
%o A371378                             if isprime(t):
%o A371378                                 passed.add(t)
%o A371378         yield from sorted(passed)
%o A371378 print(list(islice(agen(), 63))) # _Michael S. Branicky_, Mar 20 2024
%Y A371378 Cf. A062351, A062352, A156116, A367735.
%K A371378 nonn,base,fini
%O A371378 1,1
%A A371378 _James S. DeArmon_, Mar 20 2024
%E A371378 More terms from _Michael S. Branicky_, Mar 20 2024