This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A371401 #5 Mar 22 2024 17:04:11 %S A371401 1,1,1,1,4,4,1,9,21,9,1,16,66,76,16,1,25,160,340,205,25,1,36,330,1100, %T A371401 1275,456,36,1,49,609,2905,5425,3801,889,49,1,64,1036,6664,18130, %U A371401 20776,9604,1576,64,1,81,1656,13776,51156,86436,65856,21456,2601,81 %N A371401 Triangle read by rows: T(n, k) = [x^k] (n*x + 1)*Hypergeometric([-n, -n + 1], [1], x). %F A371401 Sum_{k=0..n} a(n) = (n + 1)*binomial(2*n - 1, n). %e A371401 Triangle starts: %e A371401 [0] 1; %e A371401 [1] 1, 1; %e A371401 [2] 1, 4, 4; %e A371401 [3] 1, 9, 21, 9; %e A371401 [4] 1, 16, 66, 76, 16; %e A371401 [5] 1, 25, 160, 340, 205, 25; %e A371401 [6] 1, 36, 330, 1100, 1275, 456, 36; %e A371401 [7] 1, 49, 609, 2905, 5425, 3801, 889, 49; %e A371401 [8] 1, 64, 1036, 6664, 18130, 20776, 9604, 1576, 64; %p A371401 P := (n, x) -> (n*x + 1)*hypergeom([-n, -n + 1], [1], x): %p A371401 T := (n, k) -> coeff(simplify(P(n, x)), x, k): %p A371401 seq(seq(T(n, k), k = 0..n), n = 0..9); %Y A371401 Cf. A371400, A097070 (row sums, shifted). %K A371401 nonn,tabl,easy %O A371401 0,5 %A A371401 _Peter Luschny_, Mar 22 2024