This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A371403 #32 May 21 2025 14:29:25 %S A371403 34,258,2147,11582,62192,274810,1500309,2235294,10919138,24000612, %T A371403 3074210315,6244442805,6244442805,143338476264,244844614858 %N A371403 Least k such that prime(k), prime(k+1), prime(k+2), ..., prime(k+n) all have the same last digit. %C A371403 The interest in studying a sequence of n consecutive prime numbers having the same last digit is to look at the behavior of the rarefaction of these numbers when n becomes large. %C A371403 a(k) > 10^10 for k >= 14. - _David A. Corneth_, Mar 22 2024 %e A371403 a(1) = A107730(1) = 34 because prime(34) = 139, prime(35) = 149, both end with the digit 9, and no two consecutive smaller primes end with the same digit. %e A371403 a(2) = 258 because prime(258) = 1627, prime(259) = 1637, prime(260) = 1657 with the same last digit 7, and no three consecutive smaller primes have the same last digit. %e A371403 a(4) = A371390(1). %p A371403 nn:=15*10^6: %p A371403 for n from 2 to 7 do : %p A371403 ii:=0:d:=array(1..n): %p A371403 for m from 1 to nn while(ii=0) %p A371403 do: %p A371403 lst:={}: %p A371403 for k from 1 to n do: %p A371403 d[k]:=irem(ithprime(m+k-1),10): %p A371403 lst:=lst union {d[k]}: %p A371403 od: %p A371403 if lst={d[1]} %p A371403 then %p A371403 printf(`%d %d \n`,n-1,m):ii:=1: %p A371403 else %p A371403 fi: %p A371403 od: %p A371403 od: %t A371403 a[n_] := Module[{v = Mod[Prime[Range[n + 1]], 10], k = 1, p}, p = Prime[n + 1]; While[! SameQ @@ v, p = NextPrime[p]; v = Join[Rest[v], {Mod[p, 10]}]; k++]; k]; Array[a, 6] (* _Amiram Eldar_, Mar 21 2024 *) %o A371403 (PARI) %o A371403 upto(n) = { %o A371403 n += 30; %o A371403 my(res = List(), q = 2, t = 1, ld = 2, nld, streak = 0); %o A371403 forprime(p = 3, oo, %o A371403 nld = p%10; %o A371403 if(nld == ld, %o A371403 streak++; %o A371403 if(streak > #res, %o A371403 listput(res, t-streak+1); %o A371403 print1(t-streak+1", "); %o A371403 ) %o A371403 , %o A371403 streak = 0 %o A371403 ); %o A371403 q = p; %o A371403 ld = nld; %o A371403 t++; %o A371403 if(t > n, %o A371403 return(res); %o A371403 ) %o A371403 ); %o A371403 res %o A371403 } \\ _David A. Corneth_, Mar 23 2024 %Y A371403 Cf. A000040, A107730, A129750, A371390. %K A371403 nonn,base,hard,more %O A371403 1,1 %A A371403 _Michel Lagneau_, Mar 21 2024 %E A371403 a(7)-a(10) from _Amiram Eldar_, Mar 21 2024 %E A371403 a(11)-a(13) from _David A. Corneth_, Mar 22 2024 %E A371403 a(14) from _Michael S. Branicky_, May 15 2025 %E A371403 a(15) from _Michael S. Branicky_, May 21 2025