This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A371408 #15 Mar 25 2024 16:35:13 %S A371408 0,0,0,0,1,4,20,80,315,1176,4284,15240,53295,183700,625768,2110472, %T A371408 7057505,23427600,77271120,253426752,827009523,2686728060,8693388060, %U A371408 28026897360,90058925649,288516259416,921755412900,2937377079000,9338728806225,29626186593276 %N A371408 Number of Dyck paths of semilength n having exactly three (possibly overlapping) occurrences of the consecutive step pattern UDU, where U = (1,1) and D = (1,-1). %H A371408 Alois P. Heinz, <a href="/A371408/b371408.txt">Table of n, a(n) for n = 0..2090</a> %H A371408 Wikipedia, <a href="https://en.wikipedia.org/wiki/Lattice_path#Counting_lattice_paths">Counting lattice paths</a> %F A371408 a(n) mod 2 = A121262(n) for n >= 1. %e A371408 a(4) = 1: UDUDUDUD. %e A371408 a(5) = 4: UDUDUDUUDD, UDUDUUDUDD, UDUUDUDUDD, UUDUDUDUDD. %p A371408 a:= n-> `if`(n<4, 0, binomial(n-1, 3)*add(binomial(n-3, j)* %p A371408 binomial(n-3-j, j-1), j=0..ceil((n-3)/2))/(n-3)): %p A371408 seq(a(n), n=0..29); %p A371408 # second Maple program: %p A371408 a:= proc(n) option remember; `if`(n<5, [0$4, 1][n+1], %p A371408 (n-1)*((2*n-7)*a(n-1)+3*(n-2)*a(n-2))/((n-2)*(n-4))) %p A371408 end: %p A371408 seq(a(n), n=0..29); %Y A371408 Column k=3 of A091869. %Y A371408 Cf. A000108, A001006, A005717, A102839, A121262. %K A371408 nonn %O A371408 0,6 %A A371408 _Alois P. Heinz_, Mar 22 2024