cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A371409 Irregular triangle T(n,k) read by rows: row n lists the positions of right parentheses in the properly nested string of parentheses encoded by A063171(n).

This page as a plain text file.
%I A371409 #21 Mar 27 2024 16:32:28
%S A371409 2,2,4,3,4,2,4,6,2,5,6,3,4,6,3,5,6,4,5,6,2,4,6,8,2,4,7,8,2,5,6,8,2,5,
%T A371409 7,8,2,6,7,8,3,4,6,8,3,4,7,8,3,5,6,8,3,5,7,8,3,6,7,8,4,5,6,8,4,5,7,8,
%U A371409 4,6,7,8,5,6,7,8,2,4,6,8,10,2,4,6,9,10,2,4,7,8,10
%N A371409 Irregular triangle T(n,k) read by rows: row n lists the positions of right parentheses in the properly nested string of parentheses encoded by A063171(n).
%C A371409 See A370220 for the positions of left parentheses.
%D A371409 Donald E. Knuth, The Art of Computer Programming, Vol. 4A: Combinatorial Algorithms, Part 1, Addison-Wesley, 2011, Section 7.2.1.6, pp. 440-444.
%H A371409 Paolo Xausa, <a href="/A371409/b371409.txt">Table of n, a(n) for n = 1..15521</a> (rows 1..2055 of the triangle, flattened).
%e A371409 The following table lists the positions of right parentheses for properly nested strings having lengths up to 8, along with the positions of left parentheses.
%e A371409 .
%e A371409       | Properly |          | Pos. of right | Pos. of left
%e A371409       | Nested   | A063171  | parentheses   | parentheses
%e A371409     n | String   |   (n)    | (this seq.)   | (A370220)
%e A371409   ----+----------+----------+---------------+---------------
%e A371409     1 | ()       | 10       | 2             | 1
%e A371409     2 | ()()     | 1010     | 2 4           | 1 3
%e A371409     3 | (())     | 1100     | 3 4           | 1 2
%e A371409     4 | ()()()   | 101010   | 2 4 6         | 1 3 5
%e A371409     5 | ()(())   | 101100   | 2 5 6         | 1 3 4
%e A371409     6 | (())()   | 110010   | 3 4 6         | 1 2 5
%e A371409     7 | (()())   | 110100   | 3 5 6         | 1 2 4
%e A371409     8 | ((()))   | 111000   | 4 5 6         | 1 2 3
%e A371409     9 | ()()()() | 10101010 | 2 4 6 8       | 1 3 5 7
%e A371409    10 | ()()(()) | 10101100 | 2 4 7 8       | 1 3 5 6
%e A371409    11 | ()(())() | 10110010 | 2 5 6 8       | 1 3 4 7
%e A371409    12 | ()(()()) | 10110100 | 2 5 7 8       | 1 3 4 6
%e A371409    13 | ()((())) | 10111000 | 2 6 7 8       | 1 3 4 5
%e A371409    14 | (())()() | 11001010 | 3 4 6 8       | 1 2 5 7
%e A371409    15 | (())(()) | 11001100 | 3 4 7 8       | 1 2 5 6
%e A371409    16 | (()())() | 11010010 | 3 5 6 8       | 1 2 4 7
%e A371409    17 | (()()()) | 11010100 | 3 5 7 8       | 1 2 4 6
%e A371409    18 | (()(())) | 11011000 | 3 6 7 8       | 1 2 4 5
%e A371409    19 | ((()))() | 11100010 | 4 5 6 8       | 1 2 3 7
%e A371409    20 | ((())()) | 11100100 | 4 5 7 8       | 1 2 3 6
%e A371409    21 | ((()())) | 11101000 | 4 6 7 8       | 1 2 3 5
%e A371409    22 | (((()))) | 11110000 | 5 6 7 8       | 1 2 3 4
%t A371409 zlist[m_] := With[{r = 2*Range[2, m]}, Reverse[Map[Join[{1}, #] &, Select[Subsets[Range[2, 2*m-1], {m-1}], Min[r-#] > 0 &]]]];
%t A371409 Table[Delete[Map[Complement[Range[2*m], #] &, zlist[m]], 0], {m, 5}] (* _Paolo Xausa_, Mar 27 2024 *)
%t A371409 (* 2nd program: uses Algorithm Z from Knuth's TAOCP section 7.2.1.6, exercise 2 *)
%t A371409 zlist[m_] := Block[{z = 2*Range[m] - 1, j},
%t A371409     Reap[
%t A371409     While[True,
%t A371409         Sow[z];
%t A371409         If[z[[m-1]] < z[[m]] - 1,
%t A371409             z[[m]]--,
%t A371409             j = m - 1; z[[m]] = 2*m - 1;
%t A371409             While[j > 1 && z[[j-1]] == z[[j]] - 1, z[[j]] = 2*j - 1; j--];
%t A371409             If[j == 1,Break[]];
%t A371409             z[[j]]--]
%t A371409     ]][[2]][[1]]];
%t A371409 Join[{{2}}, Table[Delete[Map[Complement[Range[2*m], #] &, zlist[m]], 0], {m, 2, 5}]] (* _Paolo Xausa_, Mar 27 2024 *)
%Y A371409 Cf. A063171, A370220, A072643 (row lengths), A371410 (row sums).
%K A371409 nonn,tabf
%O A371409 1,1
%A A371409 _Paolo Xausa_, Mar 22 2024