This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A371417 #16 May 26 2024 12:18:41 %S A371417 1,0,1,0,0,1,0,0,2,1,0,0,0,3,1,0,0,0,3,4,1,0,0,0,6,6,5,1,0,0,0,0,16, %T A371417 10,6,1,0,0,0,0,12,30,15,7,1,0,0,0,0,12,35,50,21,8,1,0,0,0,0,24,50,75, %U A371417 77,28,9,1,0,0,0,0,0,90,126,140,112,36,10,1 %N A371417 Triangle read by rows: T(n,k) is the number of complete compositions of n with k parts. %C A371417 A composition (ordered partition) is complete if the set of parts both covers an interval (is gap-free) and contains 1. %H A371417 Alois P. Heinz, <a href="/A371417/b371417.txt">Rows n = 0..200, flattened</a> %F A371417 T(n,k) = k!*[z^n*t^k] Sum_{i>0} z^(i*(i+1)/2)*t^i * Product_{j=1..i} Sum_{k>=0} (z^(j*k)*t^k)/(k+1)!. %e A371417 The triangle begins: %e A371417 k=0 1 2 3 4 5 6 7 8 9 10 %e A371417 n=0: 1; %e A371417 n=1: 0, 1; %e A371417 n=2: 0, 0, 1; %e A371417 n=3: 0, 0, 2, 1; %e A371417 n=4: 0, 0, 0, 3, 1; %e A371417 n=5: 0, 0, 0, 3, 4, 1; %e A371417 n=6: 0, 0, 0, 6, 6, 5, 1; %e A371417 n=7: 0, 0, 0, 0, 16, 10, 6, 1; %e A371417 n=8: 0, 0, 0, 0, 12, 30, 15, 7, 1; %e A371417 n=9: 0, 0, 0, 0, 12, 35, 50, 21, 8, 1; %e A371417 n=10: 0, 0, 0, 0, 24, 50, 75, 77, 28, 9, 1; %e A371417 ... %e A371417 For n = 5 there are a total of 8 complete compositions: %e A371417 T(5,3) = 3: (221), (212), (122) %e A371417 T(5,4) = 4: (2111), (1211), (1121), (1112) %e A371417 T(5,5) = 1: (11111) %p A371417 b:= proc(n, i, t) option remember; `if`(n=0, %p A371417 `if`(i=0, t!, 0), `if`(i<1 or n<i, 0, add( %p A371417 expand(x^j*b(n-i*j, i-1, t+j)/j!), j=1..n/i))) %p A371417 end: %p A371417 T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(add(b(n, i, 0), i=0..n)): %p A371417 seq(T(n), n=0..12); # _Alois P. Heinz_, Apr 03 2024 %o A371417 (PARI) %o A371417 G(N)={ my(z='z+O('z^N)); Vec(sum(i=1,N,z^(i*(i+1)/2)*t^i*prod(j=1,i,sum(k=0,N, (z^(j*k)*t^k)/(k+1)!))))} %o A371417 my(v=G(10)); for(n=0, #v, if(n<1,print([1]), my(p=v[n], r=vector(n+1)); for(k=0, n, r[k+1] =k!*polcoeff(p, k)); print(r))) %Y A371417 A107428 counts gap-free compositions. %Y A371417 A251729 counts gap-free but not complete compositions. %Y A371417 Cf. A107429 (row sums give complete compositions of n), A000670 (column sums), A152947 (number of nonzero terms per column). %Y A371417 Cf. A066099, A124774, A373118. %K A371417 nonn,easy,tabl %O A371417 0,9 %A A371417 _John Tyler Rascoe_, Mar 23 2024