cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A371418 The largest aliquot divisor of the sum of divisors of n; a(1) = 1.

Original entry on oeis.org

1, 1, 2, 1, 3, 6, 4, 5, 1, 9, 6, 14, 7, 12, 12, 1, 9, 13, 10, 21, 16, 18, 12, 30, 1, 21, 20, 28, 15, 36, 16, 21, 24, 27, 24, 13, 19, 30, 28, 45, 21, 48, 22, 42, 39, 36, 24, 62, 19, 31, 36, 49, 27, 60, 36, 60, 40, 45, 30, 84, 31, 48, 52, 1, 42, 72, 34, 63, 48, 72
Offset: 1

Views

Author

Amiram Eldar, Mar 23 2024

Keywords

Comments

Carmichael (1921) defined this arithmetic function for the purpose of studying periodic chains that are formed by repeatedly applying the mapping x -> a(x) starting at a given positive integer. This results in a sequence that is analogous to an aliquot sequence.
Periodic chains of cycle 1 are the fixed points of this sequence. 1 and the even perfect numbers (the even terms of A000396) are fixed points. Are there any other numbers k such that a(k) = k?
If a(k) = k and k is even, then a(k) is even and so is sigma(k), and therefore sigma(k) = 2*k and k is an even perfect number. If k is odd, then it is an odd multiperfect number, and no odd multiperfect number above 1 is known.
More specifically, if a(k) = k and k is odd, then k must be a square, and an m-multiperfect number (number k such that sigma(k) = m * k), with m being an odd prime number that is the least prime factor of sigma(k). For example, if there is an odd triperfect number (A005820) then it is a fixed point of this sequence.
Periodic chains of cycle 2 are amicable pairs (A371419 and A371420). Are there any longer cycles?

Examples

			The sum of the divisors of 3 is 1 + 3 = 4. The divisors of 4 are 1, 2, 4. 2 is the largest aliquot divisor of 4. Therefore a(3) = 2.
		

Crossrefs

Programs

  • Mathematica
    r[n_] := n/FactorInteger[n][[1, 1]]; a[n_] := r[DivisorSigma[1, n]]; Array[a, 100]
  • PARI
    a(n) = {my(s = sigma(n)); if(s == 1, 1, s/factor(s)[1, 1]);}

Formula

a(n) = A032742(A000203(n)).
a(n) = A000203(n)/A071189(n).
a(n) = A000203(n)/2 if n is in A028983 (i.e., n is not in A028982).
a(k) = 1 if and only if k = 1 or k is in A023194.

A371421 Numbers whose aliquot-like sequence based on the largest aliquot divisor of the sum of divisors of n (A371418) terminates in a fixed point.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 16, 17, 18, 19, 20, 21, 22, 24, 25, 26, 27, 28, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 43, 45, 46, 47, 49, 50, 51, 52, 53, 55, 57, 58, 59, 61, 63, 64, 67, 68, 71, 73, 74, 79, 80, 81, 82, 89, 93, 96, 97, 98, 100, 101
Offset: 1

Views

Author

Amiram Eldar, Mar 23 2024

Keywords

Comments

It is unknown whether 222 is a term of this sequence or not (see A371423).

Examples

			3 is a term because when we start with 3 and repeatedly apply the mapping x -> A371418(x), we get the sequence 3, 2, 1, 1, 1, ...
40 is a term because when we start with 40 and repeatedly apply the mapping x -> A371418(x), we get the sequence 40, 45, 39, 28, 28, 28, ...
		

Crossrefs

A023194 is a subsequence.

Programs

  • Mathematica
    r[n_] := n/FactorInteger[n][[1, 1]]; f[n_] := r[DivisorSigma[1, n]]; q[n_] := Module[{m = NestWhileList[f, n, UnsameQ, All][[-1]]}, f[m] == m]; Select[Range[221], q]

A371423 Aliquot-like sequence based on the largest aliquot divisor of the sum of divisors of n (A371418) that starts with 222.

Original entry on oeis.org

222, 228, 280, 360, 585, 546, 672, 1008, 1612, 1568, 1197, 1040, 1302, 1536, 2046, 2304, 949, 518, 456, 600, 930, 1152, 1105, 756, 1120, 1512, 2400, 3906, 4992, 7140, 12096, 20320, 24192, 40800, 70308, 108416, 135660, 241920, 490560, 902208, 1235456, 1309440, 2354688
Offset: 1

Views

Author

Amiram Eldar, Mar 23 2024

Keywords

Comments

222 is the least number k for which the repeated iterations of the mapping k -> A371418(k) seem to generate an unbounded sequence.

Examples

			a(1) = 222 by definition.
a(2) = A371418(a(1)) = A371418(222) = 228.
a(3) = A371418(a(2)) = A371418(228) = 280.
		

Crossrefs

Similar sequences: A008892, A323328, A361421.

Programs

  • Mathematica
    r[n_] := n/FactorInteger[n][[1, 1]]; f[n_] := r[DivisorSigma[1, n]]; NestList[f, 222, 60]
  • PARI
    f(n) = {my(s = sigma(n)); if(s == 1, 1, s/factor(s)[1, 1]);}
    lista(nmax) = {my(m = 222); for(n = 1, nmax, print1(m, ", "); m = f(m));}
Showing 1-3 of 3 results.