This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A371442 #33 Mar 28 2024 18:04:09 %S A371442 0,1,1,1,2,3,2,3,2,2,3,3,2,2,3,3,4,5,4,5,6,7,6,7,4,5,4,5,6,7,6,7,4,4, %T A371442 5,5,4,4,5,5,6,6,7,7,6,6,7,7,4,4,5,5,4,4,5,5,6,6,7,7,6,6,7,7,8,9,8,9, %U A371442 10,11,10,11,8,9,8,9,10,11,10,11,12,13,12 %N A371442 For any positive integer n with binary digits (b_1, ..., b_w) (where b_1 = 1), the binary digits of a(n) are (b_1, b_3, ..., b_{2*ceiling(w/2)-1}); a(0) = 0. %C A371442 In other words, we keep odd-indexed bits. %C A371442 For any v > 0, the value v appears A003945(A070939(v)) times in the sequence. %H A371442 Rémy Sigrist, <a href="/A371442/b371442.txt">Table of n, a(n) for n = 0..8192</a> %H A371442 <a href="/index/Bi#binary">Index entries for sequences related to binary expansion of n</a> %F A371442 a(A000695(n)) = n. %F A371442 a(A001196(n)) = n. %F A371442 a(A165199(n)) = a(n). %e A371442 The first terms, in decimal and in binary, are: %e A371442 n a(n) bin(n) bin(a(n)) %e A371442 -- ---- ------ --------- %e A371442 0 0 0 0 %e A371442 1 1 1 1 %e A371442 2 1 10 1 %e A371442 3 1 11 1 %e A371442 4 2 100 10 %e A371442 5 3 101 11 %e A371442 6 2 110 10 %e A371442 7 3 111 11 %e A371442 8 2 1000 10 %e A371442 9 2 1001 10 %e A371442 10 3 1010 11 %e A371442 11 3 1011 11 %e A371442 12 2 1100 10 %e A371442 13 2 1101 10 %e A371442 14 3 1110 11 %e A371442 15 3 1111 11 %t A371442 A371442[n_] := FromDigits[IntegerDigits[n, 2][[1;;-1;;2]], 2]; %t A371442 Array[A371442, 100, 0] (* _Paolo Xausa_, Mar 28 2024 *) %o A371442 (PARI) a(n) = { my (b = binary(n)); fromdigits(vector(ceil(#b/2), k, b[2*k-1]), 2); } %o A371442 (Python) def a(n): return int(bin(n)[::2], 2) %Y A371442 See A371459 for the sequence related to even-indexed bits. %Y A371442 See A059905 and A063694 for similar sequences. %Y A371442 Cf. A000695, A001196, A003945, A070939, A165199, A371461. %K A371442 nonn,base,easy %O A371442 0,5 %A A371442 _Rémy Sigrist_, Mar 24 2024